Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cytotherapy ; 26(5): 482-489, 2024 05.
Article in English | MEDLINE | ID: mdl-38416086

ABSTRACT

BACKGROUND AIMS: Cryopreservation of hematopoietic stem cells (HSCs) is crucial for autologous transplantation, cord blood banking and other special circumstances. Dimethyl sulfoxide (DMSO) is used most commonly for cryopreserving HSC products but can cause infusional toxicities and affect cell viability and engraftment after transplant. A systematic review of controlled studies using lower concentrations of DMSO to cryopreserve HSC products in clinical transplant studies is needed to determine the effect of reducing DMSO concentrations on post-thaw cell viability, initial engraftment and adverse effects on patient health. METHODS: All studies identified in our systematic search (to July 11, 2023) examining the use of cryopreserved peripheral blood stem cells (PBSCs) for autologous stem cell transplantation (AHCT) were included. Meta-analysis was performed to determine how varying the concentration of DMSO during cryopreservation effects post-thaw cell viability, initial engraftment and adverse effects on patient health. RESULTS: A total of 1547 studies were identified in our systematic search, with seven published articles meeting eligibility for inclusion in meta-analysis. All patients underwent AHCT using (PBSCs) to treat hematologic malignancies. The viability of CD34+ cells post thaw was greater when cryopreserved with 5% DMSO compared with 10% DMSO, with lower rates of adverse side effects in patients. DMSO concentration had minimal impact on rates of initial engraftment. Significant heterogeneity in outcome reporting was observed and the potential for bias was identified in all studies. CONCLUSIONS: Reducing the concentration of DMSO from 10% to 5% during cryopreservation of autologous PBSCs may improve cell viability and reduce DMSO-associated adverse effects in patients undergoing AHCT. Data from more studies with similar patients and standard outcome reporting are needed to increase confidence in our initial observations. PROTOCOL REGISTRATION: PROSPERO; registration number CRD42023476809 registered November 8, 2023.


Subject(s)
Cryopreservation , Cryoprotective Agents , Dimethyl Sulfoxide , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells , Transplantation, Autologous , Dimethyl Sulfoxide/pharmacology , Humans , Cryopreservation/methods , Hematopoietic Stem Cells/drug effects , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cell Transplantation/methods , Transplantation, Autologous/methods , Cryoprotective Agents/pharmacology , Cell Survival/drug effects , Hematologic Neoplasms/therapy
2.
Curr Oncol ; 31(2): 603-616, 2024 01 23.
Article in English | MEDLINE | ID: mdl-38392038

ABSTRACT

Hematopoietic stem-cell (HSC) transplantation (HSCT) is used to treat various hematologic disorders. Use of genetically modified mouse models of hematopoietic cell transplantation has been critical in our fundamental understanding of HSC biology and in developing approaches for human patients. Pre-clinical studies in animal models provide insight into the journey of transplanted HSCs from infusion to engraftment in bone-marrow (BM) niches. Various signaling molecules and growth factors secreted by HSCs and the niche microenvironment play critical roles in homing and engraftment of the transplanted cells. The sustained equilibrium of these chemical and biologic factors ensures that engrafted HSCs generate healthy and durable hematopoiesis. Transplanted healthy HSCs compete with residual host cells to repopulate stem-cell niches in the marrow. Stem-cell niches, in particular, can be altered by the effects of previous treatments, aging, and the paracrine effects of leukemic cells, which create inhospitable bone-marrow niches that are unfavorable for healthy hematopoiesis. More work to understand how stem-cell niches can be restored to favor normal hematopoiesis may be key to reducing leukemic relapses following transplant.


Subject(s)
Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells , Mice , Animals , Humans , Hematopoietic Stem Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...