Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
Add more filters










Publication year range
1.
Saudi J Biol Sci ; 29(3): 1422-1427, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35280555

ABSTRACT

Dromedary camels (Camelus dromedarius) are widespread in the desert and semi-desert areas of Africa, the Arabian Peninsula, some parts of southwest Asia and Australia. In the Arabian Peninsula, these well-adapted species have been classified based on their ecology into Desert camels, found mainly in the north and center of the Peninsula, Mountain camels, distributed along the west and south of the Peninsula, and Beach camels, populating the west to southwest of the Peninsula. Here, we aimed to investigate the genetic relationship between 386 camels corresponding to 12 dromedary populations from different geographical locations and ecology in the Arabian Peninsula with the genotyping of 17 microsatellite loci. No significant deviation was observed in heterozygosity, allelic richness, Fis (inbreeding coefficient) among the studied populations had a mean value of 0.5849, 4.808 and 0.04, respectively. A mean Fst (fixation index) value of 0.0304 was calculated for the various populations with the highest value obtained between racing Omani and Awarik camel populations (0.079). Both the neighbor-joining phylogenetic tree and the STRUCTURE analysis divided the populations into three different groups corresponding to their Arabian Peninsula geographic location (North, Central and West, South-West, and South-East of the Arabian Peninsula), rather than their ecological classification, with a high level of genetic admixture and gene flow among them. Investigating the genetic relationship of dromedary populations in the Arabian Peninsula can be considered as the first milestone to conserve this well-adapted species. The results obtained here need to be further validated using whole genome sequencing data.

2.
Anim Genet ; 52(4): 385-394, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34060099

ABSTRACT

Chicken is the most numerous among the domesticated livestock species. Across cultures, religions, and societies, chicken is widely accepted with little or no taboo compared to other domestic animals. Its adaptability to diverse environmental conditions and demonstrated potential for breeding improvement provide a unique genetic resource for addressing the challenges of food security in a world impacted by climatic change and human population growth. Recent studies, shedding new knowledge on the chicken genomes, have helped reconstruct its past evolutionary history. Here, we review the literature concerning the origin, dispersion, and adaptation of domestic chicken. We highlight the role of human and natural selection in shaping the diversity of the species and provide a few examples of knowledge gaps that may be the focus of future research.


Subject(s)
Adaptation, Biological , Animal Distribution , Biological Evolution , Breeding , Chickens/physiology , Genome , Selection, Genetic , Animals , Chickens/genetics
3.
Prev Vet Med ; 181: 105062, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32615453

ABSTRACT

The year 2020 marks a decade since the final visit was made in the 'Infectious Diseases of East African Livestock' (IDEAL) project. However, data generation from samples obtained during this ambitious longitudinal study still continues. As the project launches its extensive open-access database and biobank to the scientific community, we reflect on the challenges overcome, the knowledge gained, and the advantages of such a project. We discuss the legacy of the IDEAL project and how it continues to generate evidence since being adopted by the Centre for Tropical Livestock Genetics and Health (CTLGH). We also examine the impact of the IDEAL project, from the authors perspective, for each of the stakeholders (the animal, the farmer, the consumer, the policy maker, the funding body, and the researcher and their institution) involved in the project and provide recommendations for future researchers who are interested in running longitudinal field studies.


Subject(s)
Cattle Diseases , Animals , Cattle , Cattle Diseases/diagnosis , Cattle Diseases/etiology , Cattle Diseases/prevention & control , Cattle Diseases/therapy , Databases, Factual , Longitudinal Studies
4.
Res Vet Sci ; 108: 120-4, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27663380

ABSTRACT

Most studies of infectious diseases in East African cattle have concentrated on gastro-intestinal parasites and vector-borne diseases. As a result, relatively little is known about viral diseases, except for those that are clinically symptomatic or which affect international trade such as foot and mouth disease, bluetongue and epizootic haemorrhagic disease. Here, we investigate the seroprevalence, distribution and relationship between the viruses involved in respiratory disease, infectious bovine rhinotracheitis virus (IBR), bovine parainfluenza virus Type 3 (PIV3) and bovine viral diarrhoea virus (BVDV) in East African Shorthorn Zebu calves. These viruses contribute to the bovine respiratory disease complex (BRD) which is responsible for major economic losses in cattle from intensive farming systems as a result of pneumonia. We found that calves experience similar risks of infection for IBR, PIV3, and BVDV with a seroprevalence of 20.9%, 20.1% and 19.8% respectively. We confirm that positive associations exist between IBR, PIV3 and BVDV; being seropositive for any one of these three viruses means that an individual is more likely to be seropositive for the other two viruses than expected by chance.


Subject(s)
Bovine Virus Diarrhea-Mucosal Disease/epidemiology , Diarrhea Viruses, Bovine Viral/isolation & purification , Herpesvirus 1, Bovine/isolation & purification , Infectious Bovine Rhinotracheitis/epidemiology , Parainfluenza Virus 3, Bovine/isolation & purification , Pasteurellosis, Pneumonic/epidemiology , Animals , Bovine Virus Diarrhea-Mucosal Disease/virology , Cattle , Infectious Bovine Rhinotracheitis/virology , Kenya/epidemiology , Pasteurellosis, Pneumonic/microbiology , Prevalence , Seroepidemiologic Studies
5.
Rev Sci Tech ; 34(1): 185-97, 2015 Apr.
Article in English | MEDLINE | ID: mdl-26470457

ABSTRACT

Vector-borne diseases in cattle and small ruminants (e.g. trypanosomosis, Rift Valley fever and East Coast fever) are associated with major economic losses in tropical countries, and particularly on the African continent. A variety of control strategies (e.g. management, vaccination and/or acaricide treatments) are used to minimise their negative impacts. These strategies are often associated with environmental, technical and/or economic drawbacks. However, several indigenous livestock populations have been reported to show a level of genetic tolerance or resistance to such disease challenges (e.g. trypanotolerant N'Dama cattle and Djallonké sheep). Use of these populations represents a sustainable alternative approach to minimising the negative impact of such infection/infestation on livestock production. This review summarises the current understanding of the genetic control of these adaptations, identifies knowledge gaps and critically examines the possible impacts of genomics approaches to the genetic improvement of tolerance and/or resistance to vector-borne diseases.


Subject(s)
Communicable Diseases/veterinary , Disease Vectors , Genetic Predisposition to Disease , Livestock/genetics , Africa South of the Sahara/epidemiology , Animals , Communicable Diseases/genetics , Communicable Diseases/microbiology , Communicable Diseases/virology
6.
Parasitology ; 142(3): 499-511, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25257652

ABSTRACT

Parasite burden varies widely between individuals within a population, and can covary with multiple aspects of individual phenotype. Here we investigate the sources of variation in faecal strongyle eggs counts, and its association with body weight and a suite of haematological measures, in a cohort of indigenous zebu calves in Western Kenya, using relatedness matrices reconstructed from single nucleotide polymorphism (SNP) genotypes. Strongyle egg count was heritable (h(2) = 23.9%, s.e. = 11.8%) and we also found heritability of white blood cell counts (WBC) (h(2) = 27.6%, s.e. = 10.6%). All the traits investigated showed negative phenotypic covariances with strongyle egg count throughout the first year: high worm counts were associated with low values of WBC, red blood cell count, total serum protein and absolute eosinophil count. Furthermore, calf body weight at 1 week old was a significant predictor of strongyle EPG at 16-51 weeks, with smaller calves having a higher strongyle egg count later in life. Our results indicate a genetic basis to strongyle EPG in this population, and also reveal consistently strong negative associations between strongyle infection and other important aspects of the multivariate phenotype.


Subject(s)
Cattle Diseases/parasitology , Strongylida Infections/veterinary , Strongylus/physiology , Animals , Birth Weight , Blood Proteins/analysis , Cattle , Cattle Diseases/blood , Cattle Diseases/genetics , Cluster Analysis , Erythrocyte Count/veterinary , Feces/parasitology , Genotype , Kenya , Leukocyte Count/veterinary , Parasite Egg Count/veterinary , Polymorphism, Single Nucleotide , Strongylida Infections/blood , Strongylida Infections/genetics , Strongylida Infections/parasitology , Weight Gain
7.
Prev Vet Med ; 117(2): 358-66, 2014 Nov 15.
Article in English | MEDLINE | ID: mdl-25085600

ABSTRACT

Chickens raised under village production systems are exposed to a wide variety of pathogens, and current or previous infections may affect their susceptibility to further infections with another parasite, and/or can alter the manifestation of each infection. It is possible that co-infections may be as important as environmental risk factors. However, in cross-sectional studies, where the timing of infection is unknown, apparent associations between infections may be observed due to parasites sharing common risk factors. This study measured antibody titres to 3 viral (Newcastle disease, Marek's disease and infectious bursal disease) and 2 bacterial (Pasteurella multocida and Salmonella) diseases, and the infection prevalence of 3 families of endo- and ecto-parasites (Ascaridida, Eimeria and lice) in 1056 village chickens from two geographically distinct populations in Ethiopia. Samples were collected during 4 cross-sectional surveys, each approximately 6 months apart. Constrained ordination, a technique for analysis of ecological community data, was used to explore this complex dataset and enabled potential relationships to be uncovered and tested despite the different measurements used for the different parasites. It was found that only a small proportion of variation in the data could be explained by the risk factors measured. Very few birds (9/1280) were found to be seropositive to Newcastle disease. Positive relationships were identified between Pasteurella and Salmonella titres; and between Marek's disease and parasitic infections, and these two groups of diseases were correlated with females and males, respectively. This may suggest differences in the way that the immune systems of male and female chickens interact with these parasites. In conclusion, we find that a number of infectious pathogens and their interactions are likely to impact village chicken health and production. Control of these infections is likely to be of importance in future development planning.


Subject(s)
Bacterial Infections/veterinary , Chickens , Coinfection/veterinary , Ecosystem , Poultry Diseases/microbiology , Poultry Diseases/virology , Virus Diseases/veterinary , Animals , Antibodies, Bacterial/blood , Antibodies, Viral/blood , Bacterial Infections/epidemiology , Bacterial Infections/microbiology , Coinfection/epidemiology , Coinfection/microbiology , Coinfection/virology , Cross-Sectional Studies , Ethiopia/epidemiology , Female , Male , Poultry Diseases/epidemiology , Principal Component Analysis , Risk Factors , Virus Diseases/epidemiology , Virus Diseases/virology
8.
Parasitology ; 141(10): 1289-98, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24838078

ABSTRACT

Tick-borne diseases are a major impediment to improved productivity of livestock in sub-Saharan Africa. Improved control of these diseases would be assisted by detailed epidemiological data. Here we used longitudinal, serological data to determine the patterns of exposure to Theileria parva, Theileria mutans, Babesia bigemina and Anaplasma marginale from 548 indigenous calves in western Kenya. The percentage of calves seropositive for the first three parasites declined from initial high levels due to maternal antibody until week 16, after which the percentage increased until the end of the study. In contrast, the percentage of calves seropositive for T. mutans increased from week 6 and reached a maximal level at week 16. Overall 423 (77%) calves seroconverted to T. parva, 451 (82%) to T. mutans, 195 (36%) to B. bigemina and 275 (50%) to A. marginale. Theileria parva antibody levels were sustained following infection, in contrast to those of the other three haemoparasites. Three times as many calves seroconverted to T. mutans before seroconverting to T. parva. No T. parva antibody response was detected in 25 calves that died of T. parva infection, suggesting that most deaths due to T. parva are the result of acute disease from primary exposure.


Subject(s)
Antibodies, Protozoan/blood , Theileria parva/immunology , Theileriasis/immunology , Tick-Borne Diseases/veterinary , Ticks/parasitology , Anaplasma/immunology , Animals , Babesia/immunology , Cattle , Cohort Studies , Kenya , Livestock , Longitudinal Studies , Theileriasis/mortality , Theileriasis/parasitology , Tick-Borne Diseases/immunology , Tick-Borne Diseases/mortality , Tick-Borne Diseases/parasitology
9.
Heredity (Edinb) ; 113(4): 297-305, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24736786

ABSTRACT

The Kenyan East African zebu cattle are valuable and widely used genetic resources. Previous studies using microsatellite loci revealed the complex history of these populations with the presence of taurine and zebu genetic backgrounds. Here, we estimate at genome-wide level the genetic composition and population structure of the East African Shorthorn Zebu (EASZ) of western Kenya. A total of 548 EASZ from 20 sub-locations were genotyped using the Illumina BovineSNP50 v. 1 beadchip. STRUCTURE analysis reveals admixture with Asian zebu, African and European taurine cattle. The EASZ were separated into three categories: substantial (⩾12.5%), moderate (1.56%

Subject(s)
Cattle/genetics , Evolution, Molecular , Genome , Animals , Cattle/classification , Genotype , Kenya , Male , Microsatellite Repeats
10.
Parasitology ; 140(14): 1789-98, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24001119

ABSTRACT

The co-occurrence of different pathogen species and their simultaneous infection of hosts are common, and may affect host health outcomes. Co-infecting pathogens may interact synergistically (harming the host more) or antagonistically (harming the host less) compared with single infections. Here we have tested associations of infections and their co-infections with variation in growth rate using a subset of 455 animals of the Infectious Diseases of East Africa Livestock (IDEAL) cohort study surviving to one year. Data on live body weight, infections with helminth parasites and haemoparasites were collected every 5 weeks during the first year of life. Growth of zebu cattle during the first year of life was best described by a linear growth function. A large variation in daily weight gain with a range of 0·03-0·34 kg, and a mean of 0·135 kg (0·124, 0·146; 95% CI) was observed. After controlling for other significant covariates in mixed effects statistical models, the results revealed synergistic interactions (lower growth rates) with Theileria parva and Anaplasma marginale co-infections, and antagonistic interactions (relatively higher growth rates) with T. parva and Theileria mutans co-infections, compared with infections with T. parva only. Additionally, helminth infections can have a strong negative effect on the growth rates but this is burden-dependent, accounting for up to 30% decrease in growth rate in heavily infected animals. These findings present evidence of pathogen-pathogen interactions affecting host growth, and we discuss possible mechanisms that may explain observed directions of interactions as well as possible modifications to disease control strategies when co-infections are present.


Subject(s)
Aging , Cattle Diseases/parasitology , Coinfection , Parasitic Diseases, Animal/pathology , Africa, Eastern/epidemiology , Animals , Cattle , Cattle Diseases/epidemiology , Cattle Diseases/pathology , Parasitic Diseases, Animal/epidemiology , Parasitic Diseases, Animal/parasitology , Weight Gain
11.
Anim Genet ; 44(5): 522-32, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23611337

ABSTRACT

The Green-legged Partridgelike (GP) fowl, an old native Polish breed, is characterised by reseda green-coloured shanks rather than yellow, white, slate or black commonly observed across most domestic breeds of chicken. Here, we investigate the origin, genetic relationships and structure of the GP fowl using mtDNA D-loop sequencing and genome-wide SNP analysis. Genome-wide association analysis between breeds enables us to verify the genetic control of the reseda green shank phenotype, a defining trait for the breed. Two mtDNA D-loop haplogroups and three autosomal genetic backgrounds are revealed. Significant associations of SNPs on chromosomes GGA24 and GGAZ indicate that the reseda green leg phenotype is associated with recessive alleles linked to the W and Id loci. Our results provide new insights into the genetic history of European chicken, indicating an admixed origin of East European traditional breeds of chicken on the continent, as supported by the presence of the reseda green phenotype and the knowledge that the GP fowl as a breed was developed before the advent of commercial stocks.


Subject(s)
Chickens/classification , Chickens/genetics , Animals , Breeding , Chickens/anatomy & histology , Conservation of Natural Resources , DNA, Mitochondrial/genetics , Genome-Wide Association Study , Polymorphism, Single Nucleotide
12.
Mol Ecol ; 22(10): 2683-97, 2013 May.
Article in English | MEDLINE | ID: mdl-23611649

ABSTRACT

Unravelling the genetic history of any livestock species is central to understanding the origin, development and expansion of agricultural societies and economies. Domestic village chickens are widespread in Africa. Their close association with, and reliance on, humans for long-range dispersal makes the species an important biological marker in tracking cultural and trading contacts between human societies and civilizations across time. Archaezoological and linguistic evidence suggest a complex history of arrival and dispersion of the species on the continent, with mitochondrial DNA (mtDNA) D-loop analysis revealing the presence of five distinct haplogroups in East African village chickens. It supports the importance of the region in understanding the history of the species and indirectly of human interactions. Here, through a detailed analysis of 30 autosomal microsatellite markers genotyped in 657 village chickens from four East African countries (Kenya, Uganda, Ethiopia and Sudan), we identify three distinct autosomal gene pools (I, II and III). Gene pool I is predominantly found in Ethiopia and Sudan, while II and III occur in both Kenya and Uganda. A gradient of admixture for gene pools II and III between the Kenyan coast and Uganda's hinterland (P = 0.001) is observed, while gene pool I is clearly separated from the other two. We propose that these three gene pools represent genetic signatures of separate events in the history of the continent that relate to the arrival and dispersal of village chickens and humans across the region. Our results provide new insights on the history of chicken husbandry which has been shaped by terrestrial and maritime contacts between ancient and modern civilizations in Asia and East Africa.


Subject(s)
Animal Distribution , Chickens/genetics , Cultural Evolution , Genetic Variation , Genetics, Population , Language , Africa, Eastern , Animals , Chickens/physiology , DNA, Mitochondrial/genetics , Genotype , Geography , Haplotypes/genetics , Humans , Microsatellite Repeats/genetics , Models, Genetic , Principal Component Analysis
13.
Res Vet Sci ; 94(3): 769-73, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23261160

ABSTRACT

The presence of bluetongue virus (BTV) and Epizootic Haemorrhagic Disease virus (EHDV) in indigenous calves in western Kenya was investigated. Serum was analysed for BTV and EHDV antibodies. The population seroprevalences for BTV and EHDV for calves at 51 weeks of age were estimated to be 0.942 (95% CI 0.902-0.970) and 0.637 (95% CI 0.562-0.710), respectively, indicating high levels of circulating BTV and EHDV. The odds ratio of being positive for BTV if EHDV positive was estimated to be 2.57 (95% CI 1.37-4.76). When 99 calves were tested for BTV and EHDV RNA by real-time RT-PCR, 88.9% and 63.6% were positive, respectively. Comparison of the serology and real-time RT-PCR results revealed an unexpectedly large number of calves that were negative by serology but positive by real-time RT-PCR for EHDV. Eight samples positive for BTV RNA were serotyped using 24 serotype-specific real-time RT-PCR assays. Nine BTV serotypes were detected, indicating that the cattle were infected with a heterogeneous population of BTVs. The results show that BTV and EHDV are highly prevalent, with cattle being infected from an early age.


Subject(s)
Bluetongue virus/immunology , Bluetongue/epidemiology , Cattle Diseases/virology , Hemorrhagic Disease Virus, Epizootic/immunology , Reoviridae Infections/veterinary , Animals , Antibodies, Viral/immunology , Bluetongue virus/classification , Cattle , Cattle Diseases/epidemiology , Hemorrhagic Disease Virus, Epizootic/classification , Kenya/epidemiology , Real-Time Polymerase Chain Reaction/veterinary , Reoviridae Infections/epidemiology , Reoviridae Infections/immunology , Seroepidemiologic Studies , Serotyping/veterinary
14.
Afr Archaeol Rev ; 30: 97-114, 2013.
Article in English | MEDLINE | ID: mdl-27212780

ABSTRACT

The history of the introduction and dispersal of village chickens across the African continent is a subject of intense debate and speculation among scholars. Here, we synthesize and summarise the current scientific genetic and nongenetic knowledge in relation to the history of the species on the continent. Sociocultural, linguistic, archaeological and historic data all suggest a complex history for the species in Africa, characterized by multiple maritime and/or terrestrial introductions over time and several dispersal routes towards and within Africa. Molecular genetics information supports these observations and in addition suggests possible Asian centers of origin for African domestic chickens, including South Asia and Island Southeast Asia. However, both sets of data were until now too limited in their geographic scope, both within Africa and in comparison with chickens from Asia, to unravel the history of the species in detail. We anticipate that further continent-wide studies combining archaeological, ancient and/or modern genetic information may shed new insights on the history of the species. These will contribute to a deeper understanding of the history of trading networks and human interactions within Africa and between African and Asian societies, at the root of the development and expansion of African civilizations.


L'histoire des introductions et des dispersions des poulets de village sur le continent africain reste un sujet fortement débattu et plein de spéculations parmi les experts. Ici, nous synthétisons et résumons nos connaissances génétiques et autres en rapport avec l'histoire de cette espèce domestique sur le continent. Les évidences socio-culturelles, linguistiques, archéologiques et historiques suggèrent toutes une histoire complexe de l'espèce en Afrique caractérisée par de multiples introductions maritimes et/ou terrestres, ainsi que plusieurs routes de dispersions vers l'Afrique et sur le continent. Les informations de la génétique moléculaire supportent ces observations et en plus, elles identifient les centres possibles d'origines, lesquels incluent le Sud de l'Asie et les îles de l'Asie du Sud-Est. Cependant, toutes ces évidences sont jusqu'à présentes trop limitées au niveau géographique, au sein du continent Africain et en Asie, pour révéler en détails l'histoire de l'espèce. Nous anticipons que de nouvelles études sur une grande échelle géographique associant des informations archéologiques et génétiques (ADN ancien et moderne) pourraient apporter de nouvelles lumières sur l'histoire de l'espèce. Celles-ci contribueront à une compréhension plus profonde de l'histoire des réseaux commerciaux et des interactions entre sociétés africaines, ainsi ainsi qu'entre sociétés africaines et asiatiques. Interactions qui sont à la base du développement et de l'expansion des civilisations africaines.

15.
Heredity (Edinb) ; 109(1): 6-18, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22395157

ABSTRACT

Extensive phenotypic variation is a common feature among village chickens found throughout much of the developing world, and in traditional chicken breeds that have been artificially selected for traits such as plumage variety. We present here an assessment of traditional and village chicken populations, for fine mapping of Mendelian traits using genome-wide single-nucleotide polymorphism (SNP) genotyping while providing information on their genetic structure and diversity. Bayesian clustering analysis reveals two main genetic backgrounds in traditional breeds, Kenyan, Ethiopian and Chilean village chickens. Analysis of linkage disequilibrium (LD) reveals useful LD (r(2) ≥ 0.3) in both traditional and village chickens at pairwise marker distances of ~10 Kb; while haplotype block analysis indicates a median block size of 11-12 Kb. Association mapping yielded refined mapping intervals for duplex comb (Gga 2:38.55-38.89 Mb) and rose comb (Gga 7:18.41-22.09 Mb) phenotypes in traditional breeds. Combined mapping information from traditional breeds and Chilean village chicken allows the oocyan phenotype to be fine mapped to two small regions (Gga 1:67.25-67.28 Mb, Gga 1:67.28-67.32 Mb) totalling ~75 Kb. Mapping the unmapped earlobe pigmentation phenotype supports previous findings that the trait is sex-linked and polygenic. A critical assessment of the number of SNPs required to map simple traits indicate that between 90 and 110K SNPs are required for full genome-wide analysis of haplotype block structure/ancestry, and for association mapping in both traditional and village chickens. Our results demonstrate the importance and uniqueness of phenotypic diversity and genetic structure of traditional chicken breeds for fine-scale mapping of Mendelian traits in the species, with village chicken populations providing further opportunities to enhance mapping resolutions.


Subject(s)
Chickens/genetics , Genome , Quantitative Trait Loci , Animals , Breeding , Chromosome Mapping , Genotype , Haplotypes , Linkage Disequilibrium , Phenotype , Polymorphism, Single Nucleotide
16.
Anim Genet ; 43(1): 63-71, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22221026

ABSTRACT

A genome-wide scan for quantitative trait loci (QTL) affecting gastrointestinal nematode resistance in sheep was completed using a double backcross population derived from Red Maasai and Dorper ewes bred to F(1) rams. This design provided an opportunity to map potentially unique genetic variation associated with a parasite-tolerant breed like Red Maasai, a breed developed to survive East African grazing conditions. Parasite indicator phenotypes (blood packed cell volume - PCV and faecal egg count - FEC) were collected on a weekly basis from 1064 lambs during a single 3-month post-weaning grazing challenge on infected pastures. The averages of last measurements for FEC (AVFEC) and PCV (AVPCV), along with decline in PCV from challenge start to end (PCVD), were used to select lambs (N = 371) for genotyping that represented the tails (10% threshold) of the phenotypic distributions. Marker genotypes for 172 microsatellite loci covering 25 of 26 autosomes (1560.7 cm) were scored and corrected by Genoprob prior to qxpak analysis that included Box-Cox transformed AVFEC and arcsine transformed PCV statistics. Significant QTL for AVFEC and AVPCV were detected on four chromosomes, and this included a novel AVFEC QTL on chromosome 6 that would have remained undetected without Box-Cox transformation methods. The most significant P-values for AVFEC, AVPCV and PCVD overlapped the same marker interval on chromosome 22, suggesting the potential for a single causative mutation, which remains unknown. In all cases, the favourable QTL allele was always contributed from Red Maasai, providing support for the idea that future marker-assisted selection for genetic improvement of production in East Africa will rely on markers in linkage disequilibrium with these QTL.


Subject(s)
Disease Resistance , Intestinal Diseases, Parasitic/veterinary , Quantitative Trait Loci , Sheep Diseases/genetics , Sheep Diseases/immunology , Africa , Animals , Crosses, Genetic , Female , Genome-Wide Association Study , Intestinal Diseases, Parasitic/genetics , Intestinal Diseases, Parasitic/immunology , Male , Sheep , Sheep, Domestic
17.
J Anim Breed Genet ; 129(1): 30-40, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22225582

ABSTRACT

This study aimed to estimate the level of relatedness within Ankole cattle herds using autosomal microsatellite markers and to assess the accuracy of relationship assignment based on farmers' memory. Eight cattle populations (four from each of two counties in Mbarara district in Uganda) were studied. Cattle in each population shared varying degrees of relatedness (first-, second- and third-degree relatives and unrelated individuals). Only memory-based kinship assignments which farmers knew with some confidence were tested in this experiment. DNA isolated from the blood of a subsample of 304 animals was analysed using 19 microsatellite markers. Average within population relatedness coefficients ranged from 0.010 ± 0.005 (Nshaara) to 0.067 ± 0.004 (Tayebwa). An exclusion probability of 99.9% was observed for both sire-offspring and dam-offspring relationships using the entire panel of 19 markers. Confidence from likelihood tests performed on 292 dyads showed that first-degree relatives were more easily correctly assigned by farmers than second-degree ones (p < 0.01), which were also easier to assign than third-degree relatives (p < 0.01). Accuracy of kinship assignment by the farmers was 91.9% ± 5.0 for dam-offspring dyads, 85.5% ± 3.4 for sire-offspring dyads, 75.6% ± 12.3 for half-sib and 60.0% ± 5.0 for grand dam-grand offspring dyads. Herd size, number of dyads assigned and length of time spent by the herder with their cattle population did not correlate with error in memorizing relationships. However, herd size strongly correlated with number of dyads assigned by the herder (r = 0.967, p < 0.001). Overall, we conclude that memorized records of pastoralists can be used to trace relationships and for pedigree reconstruction within Ankole cattle populations, but with the awareness that herd size constrains the number of kinship assignments remembered by the farmer.


Subject(s)
Cattle/genetics , DNA/genetics , Memory , Microsatellite Repeats/genetics , Pedigree , Animals , Genetic Loci/genetics
18.
Comp Clin Path ; 22: 1029-1036, 2012.
Article in English | MEDLINE | ID: mdl-24032003

ABSTRACT

This paper is the first attempt to accurately describe the hematological parameters for any African breed of cattle, by capturing the changes in these parameters over the first 12 months of an animal's life using a population-based sample of calves reared under field conditions and natural disease challenge. Using a longitudinal study design, a stratified clustered random sample of newborn calves was recruited into the IDEAL study and monitored at 5-weekly intervals until 51 weeks of age. The blood cell analysis performed at each visit included: packed cell volume; red cell count; red cell distribution width; mean corpuscular volume; mean corpuscular hemoglobin concentration; hemoglobin concentration; white cell count; absolute lymphocyte, eosinophil, monocyte, and neutrophil counts; platelet count; mean platelet volume; and total serum protein. The most significant age-related change in the red cell parameters was a rise in red cell count and hemoglobin concentration during the neonatal period. This is in contrast to what is reported for other ruminants, including European cattle breeds where the neonatal period is marked by a fall in the red cell parameters. There is a need to establish breed-specific reference ranges for blood parameters for indigenous cattle breeds. The possible role of the postnatal rise in the red cell parameters in the adaptability to environmental constraints and innate disease resistance warrants further research into the dynamics of blood cell parameters of these breeds.

19.
Mol Phylogenet Evol ; 58(2): 374-82, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21138772

ABSTRACT

Chicken were possibly domesticated in South and Southeast Asia. They occur ubiquitously in East Africa where they show extensive phenotypic diversity. They appeared in the region relatively late, with the first undisputed evidence of domestic chicken in Sudan, around ~ 700 BC. We reveal through a detailed analysis of mitochondrial DNA D-loop sequence diversity of 512 domestic village chickens, from four East African countries (Kenya, Ethiopia, Sudan, Uganda), the presence of at least five distinct mitochondrial DNA haplogroups. Phylogeographic analyses and inclusion of reference sequences from Asia allow us to address the origin, ways of introduction and dispersion of each haplogroup. The results indicate a likely Indian subcontinent origin for the commonest haplogroup (D) and a maritime introduction for the next commonest one (A) from Southeast and/or East Asia. Recent introgression of commercial haplotypes into the gene pool of village chickens might explain the rare presence of two haplogroups (B and C) while the origin of the last haplogroup (E) remains unclear being currently observed only outside the African continent in the inland Yunnan Province of China. Our findings not only support ancient historical maritime and terrestrial contacts between Asia and East Africa, but also indicate the presence of large maternal genetic diversity in the region which could potentially support genetic improvement programmes.


Subject(s)
Chickens/genetics , DNA, Mitochondrial/genetics , Evolution, Molecular , Phylogeography , Animals , Asia , Ethiopia , Gene Pool , Genetics, Population , Haplotypes , Kenya , Models, Genetic , Population Dynamics , Sequence Analysis, DNA , Sudan , Uganda
20.
Anim Genet ; 42(2): 125-33, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21143489

ABSTRACT

Understanding the complex origin of domesticated populations is of vital importance for understanding, preserving and exploiting breed genetic diversity. Here, we aim to assess Asian contributions to European traditional breeds and western commercial chickens for mitochondrial genetic diversity. To this end, a 365-bp fragment of the chicken mtDNA D-loop region of 16 Dutch fancy breeds (113 individuals) was surveyed, comprising almost the entire breed diversity of The Netherlands. We also sequenced the same fragment for 160 commercial birds representing all important commercial types from multiple commercial companies that together represent more than 50% of the worldwide commercial value. We identified 20 different haplotypes. The haplotypes clustered into five clades. The commonest clade (E-clade) supposedly originates from the Indian subcontinent. In addition, both in commercial chicken and Dutch fancy breeds, many haplotypes were found with a clear East Asian origin. However, the erratic occurrence of many different East Asian mitochondrial clades indicates that there were many independent instances where breeders used imported exotic chickens for enhancing local breeds. Nucleotide diversity and haplotype diversity analyses showed the influence of the introgression of East Asian chicken on genetic diversity. All populations that had haplotypes of multiple origin displayed high inferred diversity, as opposed to most populations that had only a single mitochondrial haplotype signature. Most fancy breeds were found to have a much lower within-population diversity compared to broilers and layers, although this is not the case for mitochondrial estimates in fancy breeds that have multiple origin haplotypes.


Subject(s)
Chickens/genetics , DNA, Mitochondrial/genetics , Genetic Variation , Animals , Asia, Southeastern , Base Sequence , Breeding , DNA, Mitochondrial/chemistry , Europe , Female , Haplotypes , Male , Mitochondria/genetics , Molecular Sequence Data , Netherlands , Phylogeny , Sequence Analysis, DNA/veterinary , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...