Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Biophys Chem ; 297: 107006, 2023 06.
Article in English | MEDLINE | ID: mdl-37019052

ABSTRACT

Human alpha-synuclein (αS) is associated with the occurrence of Parkinson's disease. In the past decade, six autosomally dominant mutations have been identified in αS (SNCA) gene that translate into A30P, E46K, H50Q, G51D, A53E, and A53T mutations in the protein. These mutations alter the electrostatics and hydrophobicity of a cardinal region of the protein. A comprehensive comparison of interfacial properties of these Parkinsonian αS variants is crucial to understand their membrane dynamics. Here, we investigated the interfacial activity of these αS variants at air-aqueous interface. All the αS variants were found to possess comparable surface activity of ∼20-22 mN/m. Compression/expansion isotherms reveal a very distinct behaviour of the A30P variant compared to others. The Blodgett-deposited films were analysed using CD and LD spectroscopy as well as the atomic force microscopy. All the variants adopted predominantly α-helical conformation in these films. Atomic force microscopy of the Langmuir-Blodgett films revealed self-assembly at the interface. The lipid-penetration activity was also investigated using zwitterionic and negatively charged lipid monolayers.


Subject(s)
Parkinson Disease , alpha-Synuclein , Humans , alpha-Synuclein/chemistry , Parkinson Disease/metabolism , Mutation , Gene Expression , Lipids/chemistry
3.
Article in English | MEDLINE | ID: mdl-29038276

ABSTRACT

Vancomycin-resistant Enterococcus faecium strains (VREfm) are critical public health concerns because they are among the leading causes of hospital-acquired bloodstream infections. Chlorhexidine (CHX) is a bisbiguanide cationic antiseptic that is routinely used for patient bathing and other infection control practices. VREfm are likely frequently exposed to CHX; however, the long-term effects of CHX exposure have not been studied in enterococci. In this study, we serially exposed VREfm to increasing concentrations of CHX for a period of 21 days in two independent experimental evolution trials. Reduced CHX susceptibility emerged (4-fold shift in CHX MIC). Subpopulations with reduced daptomycin (DAP) susceptibility were detected, which were further analyzed by genome sequencing and lipidomic analysis. Across the trials, we identified adaptive changes in genes with predicted or experimentally confirmed roles in chlorhexidine susceptibility (efrE), global nutritional stress response (relA), nucleotide metabolism (cmk), phosphate acquisition (phoU), and glycolipid biosynthesis (bgsB), among others. Moreover, significant alterations in membrane phospholipids were identified for some populations with reduced DAP susceptibility. Our results are clinically significant because they identify a link between serial subinhibitory CHX exposure and reduced DAP susceptibility. In addition, the CHX-induced genetic and lipidomic changes described in this study offer new insights into the mechanisms underlying the emergence of antibiotic resistance in VREfm.


Subject(s)
Anti-Bacterial Agents/pharmacology , Chlorhexidine/pharmacology , Daptomycin/pharmacology , Vancomycin-Resistant Enterococci/drug effects , Vancomycin-Resistant Enterococci/genetics , Anti-Infective Agents, Local/pharmacology , Bacterial Proteins/genetics , Drug Resistance, Multiple, Bacterial/drug effects , Ligases/genetics , Microbial Sensitivity Tests , Mutation , Phospholipids/genetics , Phospholipids/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL