Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 170
Filter
1.
J Bone Miner Res ; 2024 May 13.
Article in English | MEDLINE | ID: mdl-38738768

ABSTRACT

Individuals with type 2 diabetes have lower trabecular bone score (TBS) and increased fracture risk despite higher bone mineral density (BMD). However, measures of trabecular microarchitecture from high resolution peripheral computed tomography (HRpQCT) are not lower in type 2 diabetes. We hypothesized that confounding effects of abdominal tissue thickness may explain this discrepancy, since central obesity is a risk factor for diabetes and also artifactually lowers TBS. This hypothesis was tested in individuals aged 40 years and older from a large DXA registry, stratified by sex and diabetes status. When DXA-measured abdominal tissue thickness was not included as a covariate, men without diabetes had lower TBS than women without diabetes (mean difference -0.074, p<0.001). TBS was lower in women with versus without diabetes (mean difference -0.037, p<0.001), and men with versus without diabetes (mean difference -0.007, p=0.042). When adjusted for tissue thickness these findings reversed, and TBS became greater in men versus women without diabetes (mean difference +0.053, p<0.001), in women with versus without diabetes (mean difference +0.008, p<0.001) and in men with versus without diabetes (mean difference +0.014, p<0.001). During mean 8.7 years observation, incident major osteoporotic fractures were seen in 7048 (9.6%). Adjusted for multiple covariates except tissue thickness, TBS predicted fracture in all subgroups with no significant diabetes interaction. When further adjusted for tissue thickness, HR per SD lower TBS remained significant and even increased slightly. In conclusion, TBS predicts fractures independent of other clinical risk factors in both women and men, with and without diabetes. Excess abdominal tissue thickness in men and individuals with type 2 diabetes may artifactually lower TBS using the current algorithm, which reverses after accounting for tissue thickness. This supports ongoing efforts to update the TBS algorithm to directly account for the effects of abdominal tissue thickness for improved fracture risk prediction.


Individuals with type 2 diabetes are at increased fracture risk despite having higher bone mineral density (BMD). Previous studies suggest that trabecular bone score (TBS), a measure of bone derived from spine DXA images that can be used to assess fracture risk in addition to BMD, may be lower in individuals with type 2 diabetes. However, TBS is artificially lowered by greater abdominal obesity. We showed that abdominal obesity explained the lower TBS measurements that were seen in individuals with type 2 diabetes. However, even when we considered the effect of abdominal obesity, TBS was still able to predict major fractures in both women and men, with and without diabetes.

2.
Comput Med Imaging Graph ; 114: 102371, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38513397

ABSTRACT

Knee OsteoArthritis (OA) is a prevalent chronic condition, affecting a significant proportion of the global population. Detecting knee OA is crucial as the degeneration of the knee joint is irreversible. In this paper, we introduce a semi-supervised multi-view framework and a 3D CNN model for detecting knee OA using 3D Magnetic Resonance Imaging (MRI) scans. We introduce a semi-supervised learning approach combining labeled and unlabeled data to improve the performance and generalizability of the proposed model. Experimental results show the efficacy of our proposed approach in detecting knee OA from 3D MRI scans using a large cohort of 4297 subjects. An ablation study was conducted to investigate the contributions of various components of the proposed model, providing insights into the optimal design of the model. Our results indicate the potential of the proposed approach to improve the accuracy and efficiency of OA diagnosis. The proposed framework reported an AUC of 93.20% for the detection of knee OA.


Subject(s)
Osteoarthritis, Knee , Humans , Osteoarthritis, Knee/diagnostic imaging , Knee Joint/diagnostic imaging , Magnetic Resonance Imaging/methods
3.
BMJ Med ; 3(1): e000588, 2024.
Article in English | MEDLINE | ID: mdl-38348309

ABSTRACT

Objective: To test the effect of a complex, interdisciplinary, lifestyle and psychosocial intervention on metabolic and mental health outcomes in women with gestational diabetes mellitus during pregnancy and in the post partum. Design: Single centred, single blinded, randomised, controlled trial (the MySweetheart trial). Setting: Lausanne University Hospital, Switzerland, from 2 September 2016 to 25 October 2021. Participants: 211 women aged at least 18 years with a diagnosis of gestational diabetes mellitus at 24-32 gestational weeks were randomly assigned (1:1) to the intervention (n=105) or to usual care (n=106). Interventions: In addition to a comparator based on active guidelines for prepartum and postpartum usual care, the intervention consisted of four individual lifestyle visits during pregnancy and four interdisciplinary visits in the postpartum group, a peer support group workshop in pregnancy and post partum, and a bimonthly lifestyle coach support through telemedicine. The intervention focused on tailored behavioural and psychosocial strategies to improve diet, physical activity, mental health, social support, and adherence to gestational weight gain during pregnancy and weight retention recommendations. Main outcome measures: Primary outcomes were between-group differences in the decrease in maternal weight and depression symptom scores between baseline and one year post partum. Secondary outcomes included changes in total and central body fat, anxiety, wellbeing, glycaemic parameters (homeostatic model assessment for insulin resistance (known as HOMA-IR) and Matsuda indices), aerobic fitness (maximal oxygen uptake), gestational weight gain, and weight retention. Assessors were blinded to primary and secondary outcomes. Results: 84 (80%) of 105 women in the intervention and 95 (90%) of 106 in the usual care completed the study. There was not enough evidence of a difference in the decrease in weight (mean difference -0.38 kg (95% confidence interval -2.08 to 1.30)) or depression scores (-0.67 (-1.84 to 0.49)). The intervention led to an increase in fat-free mass (0.02 kg (0.01 to 0.03)). The intervention also decreased gestational weight gain since the first gestational diabetes mellitus visit (-1.20 kg (-2.14 to -0.26)) and weekly weight gain throughout the entire pregnancy (-0.14 kg (-0.25 to -0.03)), and led to a higher proportion of women without weight retention at one year post partum (34.1% (28/82) v 20.8% (20/96), P=0.034). Conclusions: Compared with active usual care based on guidelines, there was not enough evidence to conclude that the intervention led to decrease in weight or depression symptoms. However, the intervention decreased gestational weight gain and increased the proportion of women without weight retention. Trial registration: Clinicaltrials.gov NCT02890693.

4.
Osteoporos Int ; 35(3): 469-494, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38228807

ABSTRACT

The relationship between self-reported falls and fracture risk was estimated in an international meta-analysis of individual-level data from 46 prospective cohorts. Previous falls were associated with an increased fracture risk in women and men and should be considered as an additional risk factor in the FRAX® algorithm. INTRODUCTION: Previous falls are a well-documented risk factor for subsequent fracture but have not yet been incorporated into the FRAX algorithm. The aim of this study was to evaluate, in an international meta-analysis, the association between previous falls and subsequent fracture risk and its relation to sex, age, duration of follow-up, and bone mineral density (BMD). METHODS: The resource comprised 906,359 women and men (66.9% female) from 46 prospective cohorts. Previous falls were uniformly defined as any fall occurring during the previous year in 43 cohorts; the remaining three cohorts had a different question construct. The association between previous falls and fracture risk (any clinical fracture, osteoporotic fracture, major osteoporotic fracture, and hip fracture) was examined using an extension of the Poisson regression model in each cohort and each sex, followed by random-effects meta-analyses of the weighted beta coefficients. RESULTS: Falls in the past year were reported in 21.4% of individuals. During a follow-up of 9,102,207 person-years, 87,352 fractures occurred of which 19,509 were hip fractures. A previous fall was associated with a significantly increased risk of any clinical fracture both in women (hazard ratio (HR) 1.42, 95% confidence interval (CI) 1.33-1.51) and men (HR 1.53, 95% CI 1.41-1.67). The HRs were of similar magnitude for osteoporotic, major osteoporotic fracture, and hip fracture. Sex significantly modified the association between previous fall and fracture risk, with predictive values being higher in men than in women (e.g., for major osteoporotic fracture, HR 1.53 (95% CI 1.27-1.84) in men vs. HR 1.32 (95% CI 1.20-1.45) in women, P for interaction = 0.013). The HRs associated with previous falls decreased with age in women and with duration of follow-up in men and women for most fracture outcomes. There was no evidence of an interaction between falls and BMD for fracture risk. Subsequent risk for a major osteoporotic fracture increased with each additional previous fall in women and men. CONCLUSIONS: A previous self-reported fall confers an increased risk of fracture that is largely independent of BMD. Previous falls should be considered as an additional risk factor in future iterations of FRAX to improve fracture risk prediction.


Subject(s)
Hip Fractures , Osteoporotic Fractures , Male , Humans , Female , Osteoporotic Fractures/epidemiology , Osteoporotic Fractures/etiology , Prospective Studies , Risk Assessment , Cohort Studies , Risk Factors , Bone Density , Hip Fractures/etiology , Hip Fractures/complications
5.
J Cachexia Sarcopenia Muscle ; 15(2): 477-500, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38284511

ABSTRACT

Half of osteoporotic fractures occur in patients with normal/osteopenic bone density or at intermediate or low estimated risk. Muscle measures have been shown to contribute to fracture risk independently of bone mineral density. The objectives were to review the measurements of muscle health (muscle mass/quantity/quality, strength and function) and their association with incident fragility fractures and to summarize their use in clinical practice. This scoping review follows the PRISMA-ScR guidelines for reporting. Our search strategy covered the three overreaching concepts of 'fragility fractures', 'muscle health assessment' and 'risk'. We retrieved 14 745 references from Medline Ovid SP, EMBASE, Web of Science Core Collection and Google Scholar. We included original and prospective studies on community-dwelling adults aged over 50 years that analysed an association between at least one muscle parameter and incident fragility fractures. We systematically extracted 17 items from each study, including methodology, general characteristics and results. Data were summarized in tables and graphically presented in adjusted forest plots. Sixty-seven articles fulfilled the inclusion criteria. In total, we studied 60 muscle parameters or indexes and 322 fracture risk ratios over 2.8 million person-years (MPY). The median (interquartile range) sample size was 1642 (921-5756), age 69.2 (63.5-73.6) years, follow-up 10.0 (4.4-12.0) years and number of incident fragility fractures 166 (88-277). A lower muscle mass was positively/not/negatively associated with incident fragility fracture in 28 (2.0), 64 (2.5) and 10 (0.2 MPY) analyses. A lower muscle strength was positively/not/negatively associated with fractures in 53 (1.3), 57 (1.7 MPY) and 0 analyses. A lower muscle function was positively/not/negatively associated in 63 (1.9), 45 (1.0 MPY) and 0 analyses. An in-depth analysis shows how each single muscle parameter was associated with each fragility fractures subtype. This review summarizes markers of muscle health and their association with fragility fractures. Measures of muscle strength and function appeared to perform better for fracture risk prediction. Of these, hand grip strength and gait speed are likely to be the most practical measures for inclusion in clinical practice, as in the evaluation of sarcopenia or in further fracture risk assessment scores. Measures of muscle mass did not appear to predict fragility fractures and might benefit from further research, on D3-creatine dilution test, lean mass indexes and artificial intelligence methods.


Subject(s)
Hand Strength , Osteoporotic Fractures , Humans , Aged , Middle Aged , Hand Strength/physiology , Prospective Studies , Artificial Intelligence , Risk Factors , Osteoporotic Fractures/epidemiology , Osteoporotic Fractures/etiology , Muscle, Skeletal
6.
Nutrients ; 15(19)2023 Oct 07.
Article in English | MEDLINE | ID: mdl-37836561

ABSTRACT

Little is known about the inflammatory potential of diet and its relation to bone health. This cross-sectional study examined the association between the inflammatory potential of diet and bone-related outcomes in midwestern, post-menopausal women enrolled in the Heartland Osteoporosis Prevention Study (HOPS) randomized controlled trial. Dietary intake from the HOPS cohort was used to calculate Dietary Inflammatory Index (DII®) scores, which were energy-adjusted (E-DIITM) and analyzed by quartile. The association between E-DII and lumbar and hip bone mineral density (BMD) and lumbar trabecular bone scores (TBS; bone structure) was assessed using ANCOVA, with pairwise comparison to adjust for relevant confounders (age, education, race/ethnicity, smoking history, family history of osteoporosis/osteopenia, BMI, physical activity, and calcium intake). The cohort included 272 women, who were predominately white (89%), educated (78% with college degree or higher), with a mean BMI of 27 kg/m2, age of 55 years, and E-DII score of -2.0 ± 1.9 (more anti-inflammatory). After adjustment, E-DII score was not significantly associated with lumbar spine BMD (p = 0.53), hip BMD (p = 0.29), or TBS at any lumbar location (p > 0.05). Future studies should examine the longitudinal impact of E-DII scores and bone health in larger, more diverse cohorts.


Subject(s)
Osteoporosis , Postmenopause , Humans , Female , Middle Aged , Cross-Sectional Studies , Diet , Bone Density , Absorptiometry, Photon , Lumbar Vertebrae
7.
J Endocr Soc ; 7(10): bvad121, 2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37809053

ABSTRACT

Purpose: Fractures are increased in patients with acromegaly, both before and after successful acromegaly treatment. Abnormalities of bone microstructure, which may underlie this fragility, are present in active acromegaly but to what extent these improve with acromegaly treatment or persist despite biochemical remission remains unclear. To examine these questions, we studied the effects of acromegaly treatment and remission on bone quality. Methods: Sixty-five women and men with acromegaly were studied. Subgroups underwent assessments of areal bone mineral density by dual x-ray absorptiometry, trabecular bone score (TBS), and volumetric bone mineral density, microarchitecture, stiffness and failure load of the distal radius and tibia by high-resolution peripheral quantitative tomography in a longitudinal study before and after acromegaly treatment and in a cross-sectional study in which patients were compared to sex-, age-, and body mass index-matched healthy controls. Results: In the longitudinal study, significant increases in total, cortical, and trabecular densities at the radius and tibia and increased stiffness and failure load of the tibia occurred with acromegaly treatment. In the cross-sectional study, patients in biochemical remission after surgery had larger bones, lower trabecular and cortical volumetric density, and disrupted trabecular microarchitecture compared to controls. TBS did not change with acromegaly treatment but correlated with some microstructural parameters. Conclusion: We show, for the first time, that volumetric bone mineral density and microarchitecture of the peripheral skeleton improve with acromegaly treatment but remain abnormal in patients in remission after surgery compared to controls. These abnormalities, known to be associated with fractures in other populations, may play a role in the pathogenesis of persistent fragility in treated acromegaly.

8.
J Clin Densitom ; 26(4): 101433, 2023.
Article in English | MEDLINE | ID: mdl-37862745

ABSTRACT

Trabecular bone score (TBS) is a bone mineral density (BMD)-independent risk factor for fracture. During DXA analysis and BMD reporting, it is standard practice to exclude lumbar vertebral levels affected by structural artifact. Although TBS is relatively insensitive to degenerative artifact, it is uncertain whether TBS is still useful in the presence extreme structural artifact that precludes reliable spine BMD measurement even after vertebral exclusions. Among individuals aged 40 years and older undergoing baseline DXA assessment from September 2012 to March 2018 we identified three mutually exclusive groups: spine BMD reporting performed without exclusions (Group 1, N=12,865), spine BMD reporting performed with vertebral exclusions (Group 2, N=4867), and spine BMD reporting not performed due to severe structural artifact (Group 3, N=1541). No significant TBS difference was seen for Group 2 versus Group 1 (referent), whereas TBS was significantly greater in Group 3 (+0.041 partially adjusted, +0.043 fully adjusted). When analyzed by the reason for vertebral exclusion, multilevel degenerative changes significantly increased TBS (+0.041 partially adjusted, +0.042 fully adjusted), while instrumentation significantly reduced TBS (-0.059 partially adjusted, -0.051 fully adjusted). Similar results were seen when analyses were restricted to those in Group 3 with a single reason for vertebral exclusions, and when follow up scans were also included. During mean follow-up of 2.5 years there were 802 (4.2 %) individuals with one or more incident fractures. L1-L4 TBS showed significant fracture risk stratification in all groups including Group 3 (P-interaction >0.4). In conclusion, lumbar spine TBS can be reliably measured in the majority of lumbar spine DXA scans, including those with artifact affecting up to two vertebral levels. However, TBS is significantly affected by the presence of extreme structural artifact in the lumbar spine, especially those with multilevel degenerative disc changes and/or instrumentation that precludes reliable BMD reporting.


Subject(s)
Bone Density , Osteoporotic Fractures , Humans , Adult , Middle Aged , Cancellous Bone/diagnostic imaging , Osteoporotic Fractures/diagnostic imaging , Osteoporotic Fractures/etiology , Manitoba , Artifacts , Lumbar Vertebrae/diagnostic imaging , Absorptiometry, Photon/methods , Registries
9.
J Clin Densitom ; 26(4): 101430, 2023.
Article in English | MEDLINE | ID: mdl-37748431

ABSTRACT

Lumbar spine trabecular bone score (TBS) used in conjunction with FRAX® improves 10-year fracture prediction. The derived FRAX risk adjustment is based upon TBS measured from L1-L4, designated TBSL1-L4-FRAX. In prior studies, TBS measurements that include L1 and exclude L4 give better fracture stratification than L1-L4. We compared risk stratification from TBS-adjusted FRAX using TBS derived from different combinations of upper lumbar vertebral levels renormalized for level-specific differences in individuals from the Manitoba Bone Density Program aged >40 years with baseline assessment of TBS and FRAX. TBS measurements for L1-L3, L1-L2 and L1 alone were calculated after renormalization for level-specific differences. Corresponding TBS-adjusted FRAX scores designated TBSL1-L3-FRAX, TBSL1-L2-FRAX and TBSL1-FRAX were compared with TBSL1-L4-FRAX for fracture risk stratification. Incident major osteoporotic fractures (MOF) and hip fractures were assessed. The primary outcome was incremental change in area under the curve (ΔAUC). The study population included 71,209 individuals (mean age 64 years, 89.8% female). Before renormalization, mean TBS for L1-3, L1-L2 and L1 was significantly lower and TBS-adjusted FRAX significantly higher than from using TBSL1-L4. These differences were largely eliminated when TBS was renormalized for level-specific differences. During mean follow-up of 8.7 years 6745 individuals sustained incident MOF and 2039 sustained incident hip fractures. Compared with TBSL1-L4-FRAX, use of FRAX without TBS was associated with lower stratification (ΔAUC = -0.009, p < 0.001). There was progressive improvement in MOF stratification using TBSL1-L3-FRAX (ΔAUC = +0.001, p < 0.001), TBSL1-L2-FRAX (ΔAUC = +0.004, p < 0.001) and TBSL1-FRAX (ΔAUC = +0.005, p < 0.001). TBSL1-FRAX was significantly better than all other combinations for MOF prediction (p < 0.001). Incremental improvement in AUC for hip fracture prediction showed a similar but smaller trend. In conclusion, this single large cohort study found that TBS-adjusted FRAX performance for fracture prediction was improved when limited to the upper lumbar vertebral levels and was best using L1 alone.


Subject(s)
Hip Fractures , Osteoporotic Fractures , Humans , Female , Middle Aged , Male , Cancellous Bone/diagnostic imaging , Cohort Studies , Manitoba/epidemiology , Risk Factors , Absorptiometry, Photon , Risk Assessment , Osteoporotic Fractures/epidemiology , Bone Density , Hip Fractures/epidemiology , Lumbar Vertebrae/diagnostic imaging , Registries
10.
J Clin Densitom ; 26(4): 101429, 2023.
Article in English | MEDLINE | ID: mdl-37742612

ABSTRACT

Trabecular bone score (TBS) is a FRAX®-independent risk factor for fracture prediction. TBS values increase from cranial to caudal, with the following mean differences between TBSL1-L4 and individual lumbar vertebrae: L1 -0.093, L2 -0.008, L3 +0.055 and L4 +0.046. Excluding vertebral levels can affect FRAX-based treatment recommendations close to the intervention threshold. We examined the effect of adjusting for level-specific TBS differences in individuals with vertebral exclusions due to structural artifact on TBS-adjusted FRAX-based treatment recommendations. We identified 71,209 individuals aged ≥40 years with TBS and FRAX calculations through the Manitoba Bone Density Program. In the 24,428 individuals with vertebral exclusions, adjusting TBS using these level-specific factors agreed with TBSL1-L4 (mean difference -0.001). We compared FRAX-based treatment recommendations for TBSL1-L4 and for non-excluded vertebral levels before and after adjusting for level-specific TBS differences. Among those with baseline major osteoporotic fracture risk ≥15 %, TBS with vertebral exclusions reclassified FRAX-based treatment in 10.6 % of individuals compared with TBSL1-L4, and was reduced to 7.2 % after adjusting for level-specific differences. In 11,131 patients where L1-L2 was used for BMD reporting (the most common exclusion pattern with the largest TBS effect), treatment reclassification was reduced from 13.9 % to 2.4 %, respectively. Among individuals with baseline hip fracture risk ≥2 %, TBS vertebral exclusions reclassified 7.1 % compared with TBSL1-L4, but only 4.5 % after adjusting for level-specific differences. When L1-L2 was used for BMD reporting, treatment reclassification from hip fracture risk was reduced from 9.2 % to 5.2 %. In conclusion, TBS and TBS-adjusted FRAX-based treatment recommendations are affected by vertebral level exclusions for structural artifact. Adjusting for level-specific differences in TBS reduces reclassification in FRAX-based treatment recommendations.


Subject(s)
Hip Fractures , Osteoporotic Fractures , Humans , Cancellous Bone/diagnostic imaging , Manitoba/epidemiology , Osteoporotic Fractures/epidemiology , Osteoporotic Fractures/etiology , Bone Density , Lumbar Vertebrae/diagnostic imaging , Hip Fractures/etiology , Registries , Absorptiometry, Photon , Risk Assessment
11.
J Clin Densitom ; 26(3): 101378, 2023.
Article in English | MEDLINE | ID: mdl-37137791

ABSTRACT

Trabecular bone score (TBS), a texture measure derived from spine dual-energy x-ray absorptiometry (DXA) images, is a FRAX®-independent risk factor for fracture. The TBS adjustment to FRAX assumes the presence of femoral neck BMD in the calculation. However, there are many individuals in whom hip DXA cannot be acquired. Whether the TBS-adjustment would apply to FRAX probabilities calculated without BMD has not been studied. The current analysis was performed to evaluate major osteoporotic fracture (MOF) and hip fracture risk adjusted for FRAX with and without femoral neck BMD. The study cohort consisted of 71,209 individuals (89.8% female, mean age 64.0 years). During mean follow-up 8.7 years, 6743 (9.5%) individuals sustained one or more incident MOF, of which 2037 (2.9%) sustained a hip fracture. Lower TBS was significantly associated with increased fracture risk when adjusted for FRAX probabilities, with a slightly larger effect when BMD was not included. Inclusion of TBS in the risk calculation gave a small but significant increase in stratification for fracture probabilities estimated with and without BMD. Calibration plots showed very minor deviations from the line of identity, indicating overall good calibration. In conclusion, the existing equations for incorporating TBS in FRAX estimates of fracture probability work similarly when femoral neck BMD is not used in the calculation. This potentially extends the range of situations where TBS can be used clinically to those individuals in whom lumbar spine TBS is available but femoral neck BMD is not available.


Subject(s)
Hip Fractures , Osteoporotic Fractures , Humans , Female , Middle Aged , Male , Bone Density , Manitoba/epidemiology , Cancellous Bone/diagnostic imaging , Risk Assessment/methods , Osteoporotic Fractures/epidemiology , Osteoporotic Fractures/etiology , Absorptiometry, Photon/methods , Hip Fractures/diagnostic imaging , Hip Fractures/epidemiology , Lumbar Vertebrae/diagnostic imaging , Registries , Risk Factors
12.
Phys Eng Sci Med ; 46(2): 827-837, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37142813

ABSTRACT

Knee Osteoarthritis (OA) is one of the most common causes of physical disability worldwide associated with a significant personal and socioeconomic burden. Deep Learning approaches based on Convolutional Neural Networks (CNNs) achieved remarkable improvements in knee OA detection. Despite this success, the problem of early knee OA diagnosis from plain radiographs remains a challenging task. This is due to the high similarity between the X-ray images of OA and non-OA subjects and the disappearance of texture information regarding bone microarchitecture changes in the top layers during the learning process of the CNN models. To address these issues, we propose a Discriminative Shape-Texture Convolutional Neural Network (DST-CNN), which automatically diagnoses early knee OA from X-ray images. The proposed model incorporates a discriminative loss to improve class separability and deal with high inter-class similarities. In addition, a new Gram Matrix Descriptor (GMD) block is embedded in the CNN architecture to compute texture features from several intermediate layers and combine them with the shape features in the top layers. We show that merging texture features with deep ones leads to better prediction of the early stages of OA. Comprehensive experimental results on two large public databases, Osteoarthritis Initiative (OAI) and Multicenter Osteoarthritis Study (MOST) demonstrate the potential of the proposed network. Ablation studies and visualizations are provided for a detailed understanding of our proposed approach.


Subject(s)
Osteoarthritis, Knee , Humans , Osteoarthritis, Knee/diagnostic imaging , X-Rays , Neural Networks, Computer , Radiography , Early Diagnosis
13.
Rev Med Suisse ; 19(823): 752-755, 2023 Apr 19.
Article in French | MEDLINE | ID: mdl-37133955

ABSTRACT

The individual and societal burden of osteoporosis is high and will continue to increase due to the demographic situation. Applications based on artificial intelligence models can provide concrete solutions at each step of the management of osteoporosis: screening, diagnostic, therapy management and prognostic assessment. The implementation of such models could assist clinicians in their workflow while improving overall patient care.


L'ostéoporose représente un fléau important, à l'échelle individuelle mais aussi sociétale. Avec le vieillissement de la population, le nombre de patients concernés augmente de manière considérable. Des applications basées sur des modèles d'intelligence artificielle nous apportent des solutions de plus en plus concrètes, à chaque étape de la prise en charge de l'ostéoporose : dépistage, diagnostic, prise en charge médicamenteuse et évaluation pronostique. L'implémentation de tels modèles pourrait aider les professionnels de santé, aussi bien dans l'optimisation du flux du travail que dans la prise en charge clinique du patient.


Subject(s)
Artificial Intelligence , Osteoporosis , Humans , Osteoporosis/diagnosis , Osteoporosis/therapy , Prognosis
14.
J Clin Densitom ; 26(3): 101415, 2023.
Article in English | MEDLINE | ID: mdl-37246031

ABSTRACT

Lumbar spine trabecular bone score (TBS), a texture measure derived from spine dual-energy x-ray absorptiometry (DXA) images, is a bone mineral density (BMD)-independent risk factor for fracture. Lumbar vertebral levels that show structural artifact are excluded from BMD measurement. TBS is relatively unaffected by degenerative artifact, and it is uncertain whether the same exclusions should be applied to TBS reporting. To gain insight into the clinical impact of vertebral exclusion on TBS, we examined the effect of lumbar vertebral exclusions in routine clinical practice on tertile-based TBS categorization and TBS adjusted FRAX-based treatment recommendations. The study population consisted of 71,209 individuals aged 40 years and older with narrow fan-beam spine DXA examinations and retrospectively-derived TBS. During BMD reporting, 34.3% of the scans had one or more vertebral exclusions for structural artifact. When TBS was derived from the same vertebral levels used for BMD reporting, using fixed L1-L4 tertile cutoffs (1.23 and 1.31 from the McCloskey meta-analysis) reclassified 17.9% to a lower and 6.5% to a higher TBS category, with 75.6% unchanged. Reclassification was reduced from 24.4% overall to 17.2% when level-specific tertile cutoffs from the software manufacturer were used. Treatment reclassification based upon FRAX major osteoporotic fracture probability occurred in 2.9% overall, but in 9.6% of those with baseline risk ≥15%. For treatment based upon FRAX hip fracture probability, reclassification occurred in 3.4% overall, but in 10.4% in those with baseline risk ≥2%. In summary, lumbar spine TBS measurements based upon vertebral levels other than L1-L4 can alter the tertile category and treatment recommendations based upon TBS-adjusted FRAX calculation, especially for those close to or exceeding the treatment cut-off. Manufacturer level-specific tertile cut-offs should be used if vertebral exclusions are applied.


Subject(s)
Cancellous Bone , Osteoporotic Fractures , Humans , Adult , Middle Aged , Cancellous Bone/diagnostic imaging , Manitoba/epidemiology , Retrospective Studies , Osteoporotic Fractures/diagnostic imaging , Osteoporotic Fractures/therapy , Osteoporotic Fractures/epidemiology , Bone Density , Lumbar Vertebrae/diagnostic imaging , Absorptiometry, Photon/methods , Registries , Risk Assessment/methods
15.
Osteoporos Int ; 34(8): 1401-1409, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37154943

ABSTRACT

This study aimed to better define the role of heel-QUS in fracture prediction. Our results showed that heel-QUS predicts fracture independently of FRAX, BMD, and TBS. This corroborates its use as a case finding/pre-screening tool in osteoporosis management. INTRODUCTION: Quantitative ultrasound (QUS) characterizes bone tissue based on the speed of sound (SOS) and broadband ultrasound attenuation (BUA). Heel-QUS predicts osteoporotic fractures independently of clinical risk factors (CRFs) and bone mineral density (BMD). We aimed to investigate whether (1) heel-QUS parameters predict major osteoporotic fractures (MOF) independently of the trabecular bone score (TBS) and (2) the change of heel-QUS parameters over 2.5 years is associated with fracture risk. METHODS: One thousand three hundred forty-five postmenopausal women from the OsteoLaus cohort were followed up for 7 years. Heel-QUS (SOS, BUA, and stiffness index (SI)), DXA (BMD and TBS), and MOF were assessed every 2.5 years. Pearson's correlation and multivariable regression analyses were used to determine associations between QUS and DXA parameters and fracture incidence. RESULTS: During a mean follow-up of 6.7 years, 200 MOF were recorded. Fractured women were older, more treated with anti-osteoporosis medication; had lower QUS, BMD, and TBS; higher FRAX-CRF risk; and more prevalent fractures. TBS was significantly correlated with SOS (0.409) and SI (0.472). A decrease of one SD in SI, BUA or SOS increased the MOF risk by (OR(95%CI)) 1.43 (1.18-1.75), 1.19 (0.99-1.43), and 1.52 (1.26-1.84), respectively, after adjustment for FRAX-CRF, treatment, BMD, and TBS. We found no association between the change of QUS parameters in 2.5 years and incident MOF. CONCLUSION: Heel-QUS predicts fracture independently of FRAX, BMD, and TBS. Thus, QUS represents an important case finding/pre-screening tool in osteoporosis management. The change in QUS over time was not associated with future fractures, making it inappropriate for patient monitoring.


Subject(s)
Bone Density , Osteoporotic Fractures , Humans , Female , Osteoporotic Fractures/diagnostic imaging , Osteoporotic Fractures/epidemiology , Osteoporotic Fractures/etiology , Heel/diagnostic imaging , Cancellous Bone/diagnostic imaging , Absorptiometry, Photon/methods , Ultrasonography
16.
Arch Osteoporos ; 18(1): 73, 2023 05 22.
Article in English | MEDLINE | ID: mdl-37213026

ABSTRACT

Trabecular bonescore (TBS) helps to predict fracture risk in older adults. In this registry-based cohort study of patients aged 40 years and older, reduction in bone mineral density (BMD) and TBS are complementary for fracture risk prediction enhancement with lower BMD imparting greater risk than reduction in TBS. PURPOSE: Trabecular bone score (TBS) enhances fracture risk prediction independent of bone mineral density (BMD) in older adults. The purpose of this study was to further evaluate the gradient of fracture risk based on TBS tertile categories and WHO BMD categories, adjusted for other risk factors. METHODS: Using the Manitoba DXA registry, patients aged 40 years and older with spine/hip DXA and L1-L4 TBS were identified. Any incident fractures, major osteoporotic fractures (MOF), and hip fractures were identified. Cox regression models were used to estimate unadjusted and covariate-adjusted hazard ratios (HR, 95%CI) for incident fracture by BMD and TBS category and for each SD decrease in BMD and TBS. RESULTS: The study population included 73,108 individuals, 90% female with mean age 64 years. Mean (SD) minimum T-score was - 1.8 (1.1), and mean L1-L4 TBS was 1.257 (0.123). Lower BMD and TBS, both per SD, by WHO BMD category and by TBS tertile category, were significantly associated with MOF, hip, and any fracture (all HRs p < 0.001). However, the quantum of risk was consistently greater for BMD than TBS, with HRs showing non-overlapping CIs. CONCLUSION: TBS is complementary to BMD in prediction of incident major, hip, and any osteoporosis-related fracture, but reductions in BMD impart greater risk than reductions in TBS on both continuous and categorical scales.


Subject(s)
Bone Density , Osteoporotic Fractures , Humans , Female , Adult , Middle Aged , Aged , Male , Cohort Studies , Cancellous Bone/diagnostic imaging , Manitoba/epidemiology , Lumbar Vertebrae , Osteoporotic Fractures/epidemiology , Osteoporotic Fractures/etiology , Registries , Absorptiometry, Photon , Risk Assessment
17.
J Clin Densitom ; 26(2): 101366, 2023.
Article in English | MEDLINE | ID: mdl-37037769

ABSTRACT

Trabecular bone score (TBS), a texture measure derived from spine dual-energy x-ray absorptiometry (DXA) images, is a bone mineral density (BMD)-independent risk factor for fracture. TBS is reportedly insensitive to degenerative changes, and it is uncertain whether the same rules for excluding lumbar vertebral levels from BMD measurement should be applied to TBS. The current analysis was performed to explore inter-vertebral variation in TBS measurements from L1 to L4, how this relates to clinically identified structural artifact resulting in vertebral level exclusion from BMD reporting, and area under the curve (AUC) for incident fracture. The study population comprised 70,762 individuals aged 40 years and older at the time of baseline spine DXA assessment (mean age 64.1 years, 89.7% female), among whom 24,289 (34.3%) had one or more vertebral exclusions. Both TBS and BMD showed a similar cranial/caudal inter-vertebral gradient. Compared with L1-4, TBS from L1 alone was lower (mean difference -0.096; -7.6%) while TBS from L4 alone was 0.046 (3.6%) greater, similar in those without and with visual structural artifact. During mean follow-up of 8.7 years, 6744 (9.5%) individuals sustained incident major osteoporotic fractures. TBS from L1 alone gave significantly higher AUC for incident fracture than L1-4, which was in turn significantly higher than L2, L3 and L4 alone, seen in those without and with visual structural artifact. In contrast, AUCs for BMD showed minimal variation from L1 to L4, and was higher for L1-4 than for any individual lumbar vertebral level. In summary, we found inter-vertebral TBS variations within the lumbar spine are overall similar to BMD but are relatively unaffected by visual structural artifact. Fracture outcomes showed the strongest association with TBS measured from L1 alone. Further investigation is need to understand the cause and clinical application of these differences.


Subject(s)
Bone Density , Osteoporotic Fractures , Humans , Female , Adult , Middle Aged , Male , Cancellous Bone/diagnostic imaging , Manitoba/epidemiology , Absorptiometry, Photon/methods , Osteoporotic Fractures/epidemiology , Osteoporotic Fractures/etiology , Lumbar Vertebrae/diagnostic imaging , Registries
18.
Osteoporos Int ; 34(6): 1075-1084, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36862192

ABSTRACT

In postmenopausal women with osteoporosis, up to 10 years of denosumab treatment significantly and continuously improved bone microarchitecture assessed by tissue thickness-adjusted trabecular bone score, independently of bone mineral density. Long-term denosumab treatment decreased the number of high fracture-risk patients and shifted more patients to lower fracture-risk categories. PURPOSE: To investigate the long-term effect of denosumab on bone microarchitecture assessed by tissue thickness-adjusted trabecular bone score (TBSTT) in post-hoc subgroup analysis of FREEDOM and open-label extension (OLE). METHODS: Postmenopausal women with lumbar spine (LS) or total hip BMD T-score <-2.5 and ≥-4.0 who completed the FREEDOM DXA substudy and continued in OLE were included. Patients received either denosumab 60 mg subcutaneously every 6 months for 3 years and same-dose open-label denosumab for 7 years (long-term denosumab; n=150) or placebo for 3 years and open-label denosumab for 7 years (crossover denosumab; n=129). BMD and TBSTT were assessed on LS DXA scans at FREEDOM baseline, month 1, and years 1-6, 8, and 10. RESULTS: In long-term denosumab group, continued increases from baseline to years 4, 5, 6, 8, and 10 in BMD (11.6%, 13.7%, 15.5%, 18.5%, and 22.4%) and TBSTT (3.2%, 2.9%, 4.1%, 3.6%, and 4.7%) were observed (all P < 0.0001). Long-term denosumab treatment decreased the proportion of patients at high fracture-risk (according to TBSTT and BMD T-score) from baseline up to year 10 (93.7 to 40.4%), resulting in increases in the proportions at medium-risk (6.3 to 53.9%) and low-risk (0 to 5.7%) (P < 0.0001). Similar responses were observed in crossover denosumab group. Changes in BMD and TBSTT were poorly correlated during denosumab treatment. CONCLUSION: In postmenopausal women with osteoporosis, up to 10 years of denosumab significantly and continuously improved bone microarchitecture assessed by TBSTT, independently of BMD, and shifted more patients to lower fracture-risk categories.


Subject(s)
Bone Density Conservation Agents , Fractures, Bone , Osteoporosis, Postmenopausal , Osteoporosis , Female , Humans , Bone Density , Bone Density Conservation Agents/pharmacology , Bone Density Conservation Agents/therapeutic use , Cancellous Bone , Denosumab/pharmacology , Denosumab/therapeutic use , Fractures, Bone/chemically induced , Lumbar Vertebrae , Osteoporosis/drug therapy , Osteoporosis, Postmenopausal/drug therapy , Osteoporosis, Postmenopausal/chemically induced , Postmenopause
19.
Osteoporos Int ; 34(6): 1085-1091, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37000209

ABSTRACT

Trabecular bone score (TBS) enhances fracture risk assessment in older adults; whether this is true in younger people is uncertain. In this registry-based study of adults aged 20-39 years, low BMD, but not low TBS, predicted fracture. PURPOSE: Trabecular bone score (TBS), a bone texture measurement, is associated with fracture risk independent of bone mineral density (BMD) in older adults. In adults aged 20-40 years, TBS remains stable and its role in fracture risk assessment is unclear. We utilized the Manitoba Bone Density Registry to explore the relationship of fracture risk with BMD and TBS in younger adults. METHODS: Women and men aged 20-39 years referred for DXA testing were studied. Incident major and any fractures were captured from health records. Categories based on WHO BMD T-score classification and TBS tertile were considered using Cox regression models to estimate covariate-adjusted (including sex) hazard ratios (aHR, 95%CI) for incident fracture by category, and each SD decrement in BMD and TBS. RESULTS: The study included 2799 individuals (77% female, mean age 32 years). Mean (SD) minimum T-score was - 0.9 (1.1) and TBS 1.355 (0.114); 7% had osteoporosis and 13% were in the lowest TBS tertile. Incident major osteoporotic fracture (MOF) and any fracture risk was elevated in those with osteopenia (aHRs 1.20/1.45) and osteoporosis (aHRs 4.60/5.16). Fracture risk was unrelated to TBS tertile. Each SD decrement in BMD was associated with increased MOF risk (aHR 1.64) and any fracture (aHR 1.71); lower TBS was unrelated to fractures. CONCLUSION: In young adults, low BMD, but not low TBS, was predictive of MOF and any fracture. Routine clinical TBS measurement is not recommended for young adults. Further study is indicated to evaluate whether TBS is beneficial in subsets of younger adults.


Subject(s)
Osteoporosis , Osteoporotic Fractures , Adult , Female , Humans , Male , Absorptiometry, Photon , Bone Density , Cancellous Bone/diagnostic imaging , Lumbar Vertebrae/diagnostic imaging , Osteoporosis/epidemiology , Osteoporosis/complications , Osteoporotic Fractures/etiology , Osteoporotic Fractures/complications , Registries , Risk Assessment , Young Adult
20.
J Bone Miner Res ; 38(4): 512-521, 2023 04.
Article in English | MEDLINE | ID: mdl-36655775

ABSTRACT

Lumbar spine trabecular bone score (TBS), a gray-level texture measure derived from spine dual-energy X-ray absorptiometry (DXA) images, is a bone mineral density (BMD)-independent risk factor for fracture. An unresolved question is whether TBS is sufficiently responsive to change over time or in response to widely used osteoporosis therapy at the individual level to serve as a useful biomarker. Using the Manitoba DXA Registry, we identified 11,643 individuals age 40 years and older with two fan-beam DXA scans performed on the same instrument within 5 years (mean interval 3.2 years), of whom 6985 (60.0%) received antiresorptive osteoporosis medication (majority oral bisphosphonate) between the scans. We examined factors that were associated with a change in lumbar spine TBS, lumbar spine BMD, and total hip BMD exceeding the 95% least significant change (LSC). Change exceeding the LSC was identified in 23.0% (9.3% increase, 13.8% decrease) of lumbar spine TBS, 38.2% (22.1% increase, 16.1% decrease) lumbar spine BMD, and 42.5% (17.6% increase, 24.9% decrease) total hip BMD measurement pairs. From regression models, the variables most strongly associated with significant change in TBS (decreasing order) were tissue thickness change, acquisition mode change, weight change, and spine percent fat change. Consistent with the insensitivity of TBS to oral antiresorptive therapies, use of these agents showed very little effect on TBS change. In contrast, for both spine BMD change and total hip BMD change, osteoporosis medication use was the most significant variable, whereas tissue thickness change, acquisition mode change, and weight change had relatively weak effects. In summary, change in spine TBS using the present algorithm appears to be strongly affected by technical factors. This suggests a limited role, if any, for using TBS change in untreated individuals or for monitoring response to antiresorptive treatment in routine clinical practice with the current version of the TBS algorithm. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Subject(s)
Bone Density Conservation Agents , Osteoporosis , Osteoporotic Fractures , Humans , Adult , Bone Density/physiology , Cancellous Bone/diagnostic imaging , Osteoporotic Fractures/drug therapy , Osteoporosis/diagnostic imaging , Osteoporosis/drug therapy , Osteoporosis/complications , Absorptiometry, Photon/adverse effects , Absorptiometry, Photon/methods , Bone Density Conservation Agents/therapeutic use , Lumbar Vertebrae/diagnostic imaging , Registries
SELECTION OF CITATIONS
SEARCH DETAIL
...