Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
Alzheimers Res Ther ; 16(1): 148, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961512

ABSTRACT

BACKGROUND: Leveraging Alzheimer's disease (AD) imaging biomarkers and longitudinal cognitive data may allow us to establish evidence of cognitive resilience (CR) to AD pathology in-vivo. Here, we applied latent class mixture modeling, adjusting for sex, baseline age, and neuroimaging biomarkers of amyloid, tau and neurodegeneration, to a sample of cognitively unimpaired older adults to identify longitudinal trajectories of CR. METHODS: We identified 200 Harvard Aging Brain Study (HABS) participants (mean age = 71.89 years, SD = 9.41 years, 59% women) who were cognitively unimpaired at baseline with 2 or more timepoints of cognitive assessment following a single amyloid-PET, tau-PET and structural MRI. We examined latent class mixture models with longitudinal cognition as the dependent variable and time from baseline, baseline age, sex, neocortical Aß, entorhinal tau, and adjusted hippocampal volume as independent variables. We then examined group differences in CR-related factors across the identified subgroups from a favored model. Finally, we applied our favored model to a dataset from the Alzheimer's Disease Neuroimaging Initiative (ADNI; n = 160, mean age = 73.9 years, SD = 7.6 years, 60% women). RESULTS: The favored model identified 3 latent subgroups, which we labelled as Normal (71% of HABS sample), Resilient (22.5%) and Declining (6.5%) subgroups. The Resilient subgroup exhibited higher baseline cognitive performance and a stable cognitive slope. They were differentiated from other groups by higher levels of verbal intelligence and past cognitive activity. In ADNI, this model identified a larger Normal subgroup (88.1%), a smaller Resilient subgroup (6.3%) and a Declining group (5.6%) with a lower cognitive baseline. CONCLUSION: These findings demonstrate the value of data-driven approaches to identify longitudinal CR groups in preclinical AD. With such an approach, we identified a CR subgroup who reflected expected characteristics based on previous literature, higher levels of verbal intelligence and past cognitive activity.


Subject(s)
Magnetic Resonance Imaging , Positron-Emission Tomography , tau Proteins , Humans , Female , Male , Aged , tau Proteins/metabolism , Longitudinal Studies , Cross-Sectional Studies , Aged, 80 and over , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Alzheimer Disease/psychology , Alzheimer Disease/metabolism , Brain/diagnostic imaging , Brain/pathology , Brain/metabolism , Amyloid beta-Peptides/metabolism , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/metabolism , Cognition/physiology , Middle Aged , Cognitive Reserve/physiology , Biomarkers , Neuroimaging/methods
2.
Alzheimers Res Ther ; 16(1): 130, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38886831

ABSTRACT

BACKGROUND: There is good evidence that elevated amyloid-ß (Aß) positron emission tomography (PET) signal is associated with cognitive decline in clinically normal (CN) individuals. However, it is less well established whether there is an association between the Aß burden and decline in daily living activities in this population. Moreover, Aß-PET Centiloids (CL) thresholds that can optimally predict functional decline have not yet been established. METHODS: Cross-sectional and longitudinal analyses over a mean three-year timeframe were performed on the European amyloid-PET imaging AMYPAD-PNHS dataset that phenotypes 1260 individuals, including 1032 CN individuals and 228 participants with questionable functional impairment. Amyloid-PET was assessed continuously on the Centiloid (CL) scale and using Aß groups (CL < 12 = Aß-, 12 ≤ CL ≤ 50 = Aß-intermediate/Aß± , CL > 50 = Aß+). Functional abilities were longitudinally assessed using the Clinical Dementia Rating (Global-CDR, CDR-SOB) and the Amsterdam Instrumental Activities of Daily Living Questionnaire (A-IADL-Q). The Global-CDR was available for the 1260 participants at baseline, while baseline CDR-SOB and A-IADL-Q scores and longitudinal functional data were available for different subsamples that had similar characteristics to those of the entire sample. RESULTS: Participants included 765 Aß- (61%, Mdnage = 66.0, IQRage = 61.0-71.0; 59% women), 301 Aß± (24%; Mdnage = 69.0, IQRage = 64.0-75.0; 53% women) and 194 Aß+ individuals (15%, Mdnage = 73.0, IQRage = 68.0-78.0; 53% women). Cross-sectionally, CL values were associated with CDR outcomes. Longitudinally, baseline CL values predicted prospective changes in the CDR-SOB (bCL*Time = 0.001/CL/year, 95% CI [0.0005,0.0024], p = .003) and A-IADL-Q (bCL*Time = -0.010/CL/year, 95% CI [-0.016,-0.004], p = .002) scores in initially CN participants. Increased clinical progression (Global-CDR > 0) was mainly observed in Aß+ CN individuals (HRAß+ vs Aß- = 2.55, 95% CI [1.16,5.60], p = .020). Optimal thresholds for predicting decline were found at 41 CL using the CDR-SOB (bAß+ vs Aß- = 0.137/year, 95% CI [0.069,0.206], p < .001) and 28 CL using the A-IADL-Q (bAß+ vs Aß- = -0.693/year, 95% CI [-1.179,-0.208], p = .005). CONCLUSIONS: Amyloid-PET quantification supports the identification of CN individuals at risk of functional decline. TRIAL REGISTRATION: The AMYPAD PNHS is registered at www.clinicaltrialsregister.eu with the EudraCT Number: 2018-002277-22.


Subject(s)
Activities of Daily Living , Amyloid beta-Peptides , Positron-Emission Tomography , Humans , Positron-Emission Tomography/methods , Female , Male , Cross-Sectional Studies , Longitudinal Studies , Aged , Amyloid beta-Peptides/metabolism , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/metabolism , Middle Aged , Brain/diagnostic imaging , Brain/metabolism , Aged, 80 and over
3.
Alzheimers Res Ther ; 16(1): 129, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38886798

ABSTRACT

BACKGROUND: Autopsy work indicates that the widely-projecting noradrenergic pontine locus coeruleus (LC) is among the earliest regions to accumulate hyperphosphorylated tau, a neuropathological Alzheimer's disease (AD) hallmark. This early tau deposition is accompanied by a reduced density of LC projections and a reduction of norepinephrine's neuroprotective effects, potentially compromising the neuronal integrity of LC's cortical targets. Previous studies suggest that lower magnetic resonance imaging (MRI)-derived LC integrity may signal cortical tissue degeneration in cognitively healthy, older individuals. However, whether these observations are driven by underlying AD pathology remains unknown. To that end, we examined potential effect modifications by cortical beta-amyloid and tau pathology on the association between in vivo LC integrity, as quantified by LC MRI signal intensity, and cortical neurodegeneration, as indexed by cortical thickness. METHODS: A total of 165 older individuals (74.24 ± 9.72 years, ~ 60% female, 10% cognitively impaired) underwent whole-brain and dedicated LC 3T-MRI, Pittsburgh Compound-B (PiB, beta-amyloid) and Flortaucipir (FTP, tau) positron emission tomography. Linear regression analyses with bootstrapped standard errors (n = 2000) assessed associations between bilateral cortical thickness and i) LC MRI signal intensity and, ii) LC MRI signal intensity interacted with cortical FTP or PiB (i.e., EC FTP, IT FTP, neocortical PiB) in the entire sample and a low beta-amyloid subsample. RESULTS: Across the entire sample, we found a direct effect, where lower LC MRI signal intensity was associated with lower mediolateral temporal cortical thickness. Evaluation of potential effect modifications by FTP or PiB revealed that lower LC MRI signal intensity was related to lower cortical thickness, particularly in individuals with elevated (EC, IT) FTP or (neocortical) PiB. The latter result was present starting from subthreshold PiB values. In low PiB individuals, lower LC MRI signal intensity was related to lower EC cortical thickness in the context of elevated EC FTP. CONCLUSIONS: Our findings suggest that LC-related cortical neurodegeneration patterns in older individuals correspond to regions representing early Braak stages and may reflect a combination of LC projection density loss and emergence of cortical AD pathology. This provides a novel understanding that LC-related cortical neurodegeneration may signal downstream consequences of AD-related pathology, rather than being exclusively a result of aging.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Locus Coeruleus , Magnetic Resonance Imaging , Positron-Emission Tomography , tau Proteins , Humans , Locus Coeruleus/diagnostic imaging , Locus Coeruleus/pathology , Female , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Male , Aged , tau Proteins/metabolism , Aged, 80 and over , Cohort Studies , Amyloid beta-Peptides/metabolism , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/pathology , Carbolines , Thiazoles , Aniline Compounds , Brain Cortical Thickness
4.
Am J Geriatr Psychiatry ; 32(8): 909-919, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38443298

ABSTRACT

OBJECTIVES: We examined relationships between apathy (self and study-partner-reported) and markers of Alzheimer's disease (AD) in older adults. DESIGN: The study utilized a well-characterized sample of participants from the Harvard Aging Brain Study (HABS), a longitudinal cohort study. Participants were cognitively unimpaired without clinically significant neuropsychiatric symptoms at HABS baseline. The dependent variables, apathy evaluation scale-self (AES-S) and informant (AES-I), were administered cross-sectionally between years 6-9 and compared to the independent variables, amyloid and tau PET neuroimaging, from the same year. SETTING: Community-dwelling participants assessed at research visits in an academic medical center. PARTICIPANTS: Participants (n = 170) completed assessments within 1.5 years of their neuroimaging visit. At the time of apathy assessment, N = 156 were cognitively unimpaired and 14 had progressed to mild cognitive impairment (n = 8) or dementia (n = 6). MEASUREMENTS: We utilized linear regression models to assess cross-sectional associations of AES-S and AES-I with AD PET imaging measures (beta-amyloid (Pittsburgh Compound B) and tau (Flortaucipir)), covarying for age, sex, education, and the time between PET scan-apathy assessment. RESULTS: AES-I was significantly associated with beta-amyloid and temporal lobe tau, and the associations were retained after further adjusting for depressive symptoms. The associations between AES-S and AD biomarkers were not significant. In an exploratory subgroup analysis of cognitively unimpaired individuals with elevated Aß, we observed an association between AES-I and inferior temporal tau. CONCLUSIONS: Study-partner-reported, but not self-reported, apathy in older adults is associated with AD pathology, and we observed this relationship starting from the preclinical stage. Our findings highlight the importance of collateral information in capturing AD-related apathy.


Subject(s)
Aging , Alzheimer Disease , Apathy , Biomarkers , Positron-Emission Tomography , tau Proteins , Humans , Apathy/physiology , Male , Female , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Aged , Biomarkers/metabolism , Longitudinal Studies , tau Proteins/metabolism , Aged, 80 and over , Aging/metabolism , Aging/psychology , Cross-Sectional Studies , Brain/diagnostic imaging , Brain/metabolism , Amyloid beta-Peptides/metabolism , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/metabolism , Self Report
5.
Alzheimers Dement ; 20(2): 986-994, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37837524

ABSTRACT

INTRODUCTION: Depressive symptoms are among early behavioral changes in Alzheimer's disease (AD); however, the relationship between neurodegeneration and depressive symptoms remains inconclusive. To better understand this relationship in preclinical AD, we examined hippocampal volume and depressive symptoms in cognitively unimpaired carriers of the presenilin-1 (PSEN1) E280A mutation for autosomal dominant AD. METHODS: A total of 27 PSEN1 mutation carriers and 26 non-carrier family members were included. Linear regression was used to test the relationship between hippocampal volume and 15-item Geriatric Depression Scale. RESULTS: Carriers and non-carriers did not differ in depressive symptoms or hippocampal volume. Within carriers, lower hippocampal volume was associated with greater depressive symptoms, which remained significant after adjusting for age and cognition. This relationship was not significant in non-carriers. DISCUSSION: Hippocampal neurodegeneration may underlie depressive symptoms in preclinical autosomal dominant AD. These findings provide support for the utility of targeting depressive symptoms in AD prevention. HIGHLIGHTS: We compared unimpaired autosomal dominant Alzheimer's disease (AD) mutation carriers and non-carriers. Carriers and non-carriers did not differ in severity of depressive symptoms. In carriers, hippocampal volume was inversely associated with depressive symptoms. Depressive symptoms may be a useful target in AD prevention.


Subject(s)
Alzheimer Disease , Humans , Aged , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/genetics , Alzheimer Disease/complications , Depression/genetics , Mutation/genetics , Hippocampus/diagnostic imaging , Presenilin-1/genetics , Cognition
6.
J Cereb Blood Flow Metab ; 44(1): 131-141, 2024 01.
Article in English | MEDLINE | ID: mdl-37728659

ABSTRACT

Clinically normal females exhibit higher 18F-flortaucipir (FTP)-PET signal than males across the cortex. However, these sex differences may be explained by neuroimaging idiosyncrasies such as off-target extracerebral tracer retention or partial volume effects (PVEs). 343 clinically normal participants (female = 58%; mean[SD]=73.8[8.5] years) and 55 patients with mild cognitive impairment (female = 38%; mean[SD] = 76.9[7.3] years) underwent cross-sectional FTP-PET. We parcellated extracerebral FreeSurfer areas based on proximity to cortical ROIs. Sex differences in cortical tau were then estimated after accounting for local extracerebral retention. We simulated PVE by convolving group-level standardized uptake value ratio means in each ROI with 6 mm Gaussian kernels and compared the sexes across ROIs post-smoothing. Widespread sex differences in extracerebral retention were observed. Although attenuating sex differences in cortical tau-PET signal, covarying for extracerebral retention did not impact the largest sex differences in tau-PET signal. Differences in PVE were observed in both female and male directions with no clear sex-specific bias. Our findings suggest that sex differences in FTP are not solely attributed to off-target extracerebral retention or PVE, consistent with the notion that sex differences in medial temporal and neocortical tau are biologically driven. Future work should investigate sex differences in regional cerebral blood flow kinetics and longitudinal tau-PET.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Male , Female , tau Proteins/metabolism , Brain/diagnostic imaging , Brain/metabolism , Sex Characteristics , Cross-Sectional Studies , Positron-Emission Tomography/methods , Carbolines/metabolism , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/metabolism , Alzheimer Disease/metabolism
7.
Neurology ; 101(24): e2533-e2544, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-37968130

ABSTRACT

BACKGROUND AND OBJECTIVES: Hippocampal volume (HV) atrophy is a well-known biomarker of memory impairment. However, compared with ß-amyloid (Aß) and tau imaging, it is less specific for Alzheimer disease (AD) pathology. This lack of specificity could provide indirect information about potential copathologies that cannot be observed in vivo. In this prospective cohort study, we aimed to assess the associations among Aß, tau, HV, and cognition, measured over a 10-year follow-up period with a special focus on the contributions of HV atrophy to cognition after adjusting for Aß and tau. METHODS: We enrolled 283 older adults without dementia or overt cognitive impairment in the Harvard Aging Brain Study. In this report, we only analyzed data from individuals with available longitudinal imaging and cognition data. Serial MRI (follow-up duration 1.3-7.0 years), neocortical Aß imaging on Pittsburgh Compound B PET scans (1.9-8.5 years), entorhinal and inferior temporal tau on flortaucipir PET scans (0.8-6.0 years), and the Preclinical Alzheimer Cognitive Composite (3.0-9.8 years) were prospectively collected. We evaluated the longitudinal associations between Aß, tau, volume, and cognition data and investigated sequential models to test the contribution of each biomarker to cognitive decline. RESULTS: We analyzed data from 128 clinically normal older adults, including 72 (56%) women and 56 (44%) men; median age at inclusion was 73 years (range 63-87). Thirty-four participants (27%) exhibited an initial high-Aß burden on PET imaging. Faster HV atrophy was correlated with faster cognitive decline (R2 = 0.28, p < 0.0001). When comparing all biomarkers, HV slope was associated with cognitive decline independently of Aß and tau measures, uniquely accounting for 10% of the variance. Altogether, 45% of the variance in cognitive decline was explained by combining the change measures in the different imaging biomarkers. DISCUSSION: In older adults, longitudinal hippocampal atrophy is associated with cognitive decline, independently of Aß or tau, suggesting that non-AD pathologies (e.g., TDP-43, vascular) may contribute to hippocampal-mediated cognitive decline. Serial HV measures, in addition to AD-specific biomarkers, may help evaluate the contribution of non-AD pathologies that cannot be measured otherwise in vivo.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Male , Humans , Female , Aged , Middle Aged , Aged, 80 and over , tau Proteins , Prospective Studies , Alzheimer Disease/diagnostic imaging , Amyloid beta-Peptides , Cognitive Dysfunction/diagnostic imaging , Biomarkers , Atrophy , Positron-Emission Tomography
8.
J Neurophysiol ; 130(5): 1092-1102, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37791388

ABSTRACT

Essential tremor (ET) is a neurological disorder characterized by involuntary oscillations of the limbs. Previous studies have hypothesized that ET is a cerebellar disorder and reported impairments in motor adaptation. However, recent advances have highlighted that motor adaptation involves several components linked to anticipation and control, all dependent on cerebellum. We studied the contribution of both components in adaptation to better understand the adaptation impairments observed in ET from a behavioral perspective. To address this question, we investigated behavioral markers of adaptation in ET patients (n = 20) and age-matched neurologically intact volunteers (n = 20) in saccadic and upper limb adaptation tasks, probing compensation for target jumps and for velocity-dependent force fields, respectively. We found that both groups adapted their movements to the novel contexts; however, ET patients adapted to a lesser extent compared with neurologically intact volunteers. Importantly, components of the movement linked to anticipation were preserved in the ET group, whereas components linked to movement execution appeared responsible for the adaptation deficit in this group. Altogether, our results suggest that execution deficits may be a specific functional consequence of the alteration of neural pathways associated with ET.NEW & NOTEWORTHY We tested essential tremor patients' adaptation abilities in classical tasks including saccadic adaptation to target jumps and reaching adaptation to force field disturbances. Patients' adaptation was present but impaired in both tasks. Interestingly, the deficits were mainly present during movement execution, whereas the anticipatory components of movements were similar to neurologically intact volunteers. These findings reinforce the hypothesis of a cerebellar origin for essential tremor and detail the motor adaptation impairments previously found in this disorder.


Subject(s)
Essential Tremor , Humans , Movement , Upper Extremity , Cerebellum
9.
Nat Commun ; 14(1): 3706, 2023 06 22.
Article in English | MEDLINE | ID: mdl-37349319

ABSTRACT

Tau protein aggregates in several neurodegenerative disorders, referred to as tauopathies. The tau isoforms observed in post mortem human brain aggregates is used to classify tauopathies. However, distinguishing tauopathies ante mortem remains challenging, potentially due to differences between insoluble tau in aggregates and soluble tau in body fluids. Here, we demonstrated that tau isoforms differ between tauopathies in insoluble aggregates, but not in soluble brain extracts. We therefore characterized post-translational modifications of both the aggregated and the soluble tau protein obtained from post mortem human brain tissue of patients with Alzheimer's disease, cortico-basal degeneration, Pick's disease, and frontotemporal lobe degeneration. We found specific soluble signatures for each tauopathy and its specific aggregated tau isoforms: including ubiquitination on Lysine 369 for cortico-basal degeneration and acetylation on Lysine 311 for Pick's disease. These findings provide potential targets for future development of fluid-based biomarker assays able to distinguish tauopathies in vivo.


Subject(s)
Alzheimer Disease , Corticobasal Degeneration , Pick Disease of the Brain , Tauopathies , Humans , tau Proteins/metabolism , Alzheimer Disease/diagnosis , Alzheimer Disease/metabolism , Pick Disease of the Brain/metabolism , Lysine/metabolism , Tauopathies/diagnosis , Tauopathies/metabolism , Protein Isoforms/metabolism , Brain/metabolism , Protein Processing, Post-Translational
10.
Aging Cell ; 22(8): e13871, 2023 08.
Article in English | MEDLINE | ID: mdl-37291760

ABSTRACT

Although pathogenic variants in PSEN1 leading to autosomal-dominant Alzheimer disease (ADAD) are highly penetrant, substantial interindividual variability in the rates of cognitive decline and biomarker change are observed in ADAD. We hypothesized that this interindividual variability may be associated with the location of the pathogenic variant within PSEN1. PSEN1 pathogenic variant carriers participating in the Dominantly Inherited Alzheimer Network (DIAN) observational study were grouped based on whether the underlying variant affects a transmembrane (TM) or cytoplasmic (CY) protein domain within PSEN1. CY and TM carriers and variant non-carriers (NC) who completed clinical evaluation, multimodal neuroimaging, and lumbar puncture for collection of cerebrospinal fluid (CSF) as part of their participation in DIAN were included in this study. Linear mixed effects models were used to determine differences in clinical, cognitive, and biomarker measures between the NC, TM, and CY groups. While both the CY and TM groups were found to have similarly elevated Aß compared to NC, TM carriers had greater cognitive impairment, smaller hippocampal volume, and elevated phosphorylated tau levels across the spectrum of pre-symptomatic and symptomatic phases of disease as compared to CY, using both cross-sectional and longitudinal data. As distinct portions of PSEN1 are differentially involved in APP processing by γ-secretase and the generation of toxic ß-amyloid species, these results have important implications for understanding the pathobiology of ADAD and accounting for a substantial portion of the interindividual heterogeneity in ongoing ADAD clinical trials.


Subject(s)
Alzheimer Disease , Presenilin-1 , Humans , Male , Female , Adult , Brain/metabolism , Brain/pathology , Positron-Emission Tomography , Magnetic Resonance Imaging , Presenilin-1/chemistry , Presenilin-1/genetics , Presenilin-1/metabolism , Mutation , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Cognition , Amyloid beta-Peptides/metabolism , tau Proteins/metabolism , Longitudinal Studies , Cross-Sectional Studies , Biomarkers
11.
JAMA Neurol ; 80(5): 462-473, 2023 05 01.
Article in English | MEDLINE | ID: mdl-37010830

ABSTRACT

Importance: Postmenopausal females represent around 70% of all individuals with Alzheimer disease. Previous literature shows elevated levels of tau in cognitively unimpaired postmenopausal females compared with age-matched males, particularly in the setting of high ß-amyloid (Aß). The biological mechanisms associated with higher tau deposition in female individuals remain elusive. Objective: To examine the extent to which sex, age at menopause, and hormone therapy (HT) use are associated with regional tau at a given level of Aß, both measured with positron emission tomography (PET). Design, Setting, and Participants: This cross-sectional study included participants enrolled in the Wisconsin Registry for Alzheimer Prevention. Cognitively unimpaired males and females with at least 1 18F-MK-6240 and 11C-Pittsburgh compound B PET scan were analyzed. Data were collected between November 2006 and May 2021. Exposures: Premature menopause (menopause at younger than 40 years), early menopause (menopause at age 40-45 years), and regular menopause (menopause at older than 45 years) and HT user (current/past use) and HT nonuser (no current/past use). Exposures were self-reported. Main Outcomes and Measures: Seven tau PET regions that show sex differences across temporal, parietal, and occipital lobes. Primary analyses examined the interaction of sex, age at menopause or HT, and Aß PET on regional tau PET in a series of linear regressions. Secondary analyses investigated the influence of HT timing in association with age at menopause on regional tau PET. Results: Of 292 cognitively unimpaired individuals, there were 193 females (66.1%) and 99 males (33.9%). The mean (range) age at tau scan was 67 (49-80) years, 52 (19%) had abnormal Aß, and 106 (36.3%) were APOEε4 carriers. There were 98 female HT users (52.2%) (past/current). Female sex (standardized ß = -0.41; 95% CI, -0.97 to -0.32; P < .001), earlier age at menopause (standardized ß = -0.38; 95% CI, -0.14 to -0.09; P < .001), and HT use (standardized ß = 0.31; 95% CI, 0.40-1.20; P = .008) were associated with higher regional tau PET in individuals with elevated Aß compared with male sex, later age at menopause, and HT nonuse. Affected regions included medial and lateral regions of the temporal and occipital lobes. Late initiation of HT (>5 years following age at menopause) was associated with higher tau PET compared with early initiation (ß = 0.49; 95% CI, 0.27-0.43; P = .001). Conclusions and Relevance: In this study, females exhibited higher tau compared with age-matched males, particularly in the setting of elevated Aß. In females, earlier age at menopause and late initiation of HT were associated with increased tau vulnerability especially when neocortical Aß elevated. These observational findings suggest that subgroups of female individuals may be at higher risk of pathological burden.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Male , Female , Adult , Middle Aged , Amyloid beta-Peptides/metabolism , tau Proteins/metabolism , Cross-Sectional Studies , Brain/diagnostic imaging , Brain/metabolism , Positron-Emission Tomography , Menopause , Hormones
12.
Brain Commun ; 5(2): fcad079, 2023.
Article in English | MEDLINE | ID: mdl-37006330

ABSTRACT

This scientific commentary refers to 'Medial temporal tau predicts memory decline in cognitively unimpaired elderly', by Kwan et al. (https://doi.org/10.1093/braincomms/fcac325).

13.
J Nucl Med ; 64(6): 968-975, 2023 06.
Article in English | MEDLINE | ID: mdl-36997330

ABSTRACT

6-(fluoro-18F)-3-(1H-pyrrolo[2,3-c]pyridin-1-yl)isoquinolin-5-amine ([18F]MK6240) has high affinity and selectivity for hyperphosphorylated tau and readily crosses the blood-brain barrier. This study investigated whether the early phase of [18F]MK6240 can be used to provide a surrogate index of cerebral perfusion. Methods: Forty-nine subjects who were cognitively normal (CN), had mild cognitive impairment (MCI), or had Alzheimer's disease (AD) underwent paired dynamic [18F]MK6240 and [11C]Pittsburgh compound B (PiB) PET, as well as structural MRI to obtain anatomic information. Arterial blood samples were collected in a subset of 24 subjects for [18F]MK6240 scans to derive metabolite-corrected arterial input functions. Regional time-activity curves were extracted using atlases available in the Montreal Neurologic Institute template space and using FreeSurfer. The early phase of brain time-activity curves was analyzed using a 1-tissue-compartment model to obtain a robust estimate of the rate of transfer from plasma to brain tissue, K 1 (mL⋅cm-3⋅min-1), and the simplified reference tissue model 2 was investigated for noninvasive estimation of the relative delivery rate, R 1 (unitless). A head-to-head comparison with R 1 derived from [11C]PiB scans was performed. Grouped differences in R 1 were evaluated among CN, MCI, and AD subjects. Results: Regional K 1 values suggested a relatively high extraction fraction. R 1 estimated noninvasively from simplified reference tissue model 2 agreed well with R 1 calculated indirectly from the blood-based compartment modeling (r = 0.99; mean difference, 0.024 ± 0.027), suggesting that robust estimates were obtained. R 1 measurements obtained with [18F]MK6240 correlated strongly and overall agreed well with those obtained from [11C]PiB (r = 0.93; mean difference, -0.001 ± 0.068). Statistically significant differences were observed in regional R 1 measurements among CN, MCI, and AD subjects, notably in the temporal and parietal cortices. Conclusion: Our results provide evidence that the early phase of [18F]MK6240 images may be used to derive a useful index of cerebral perfusion. The early and late phases of a [18F]MK6240 dynamic acquisition may thus offer complementary information about the pathophysiologic mechanisms of the disease.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/diagnostic imaging , Brain/diagnostic imaging , Positron-Emission Tomography/methods , Cognitive Dysfunction/diagnostic imaging , Aniline Compounds , Cerebrovascular Circulation
14.
Neurology ; 98(15): e1512-e1524, 2022 04 12.
Article in English | MEDLINE | ID: mdl-35338074

ABSTRACT

BACKGROUND AND OBJECTIVES: Alzheimer disease (AD) clinical trials are moving earlier in the disease process according to emerging signs of ß-amyloid (Aß) and tau pathology. If early treatment is the right time for intervention, it is critical to find the right test to optimize cognitive outcome measures for clinical trials. We sought to identify cognitive measures associated with the earliest detectable signs of emerging Aß and tau pathology. METHODS: One hundred twelve clinically normal adults with longitudinal Pittsburgh compound B (PiB)-PET, 18F-flortaucipir (FTP)-PET, and cognitive data for ≥7 years were included from the Harvard Aging Brain Study (HABS). Analyses assessed those initially classified as PiB- (less than Centiloid [CL] 20) and then expanded to include PiB+ individuals up to CL40, the approximate threshold beyond which neocortical tau proliferation begins. Separate linear mixed-effects models assessed the effects of emerging global Aß (PiB slope) and tau (baseline FTP level and FTP slope) in the entorhinal and inferior temporal (IT) cortices on multiple cognitive tasks and the Preclinical Alzheimer's Cognitive Composite (PACC) over time. RESULTS: Steeper PiB slopes were associated with declining processing speed (Digit Symbol Substitution Test [DSST], Trail Making Test Part A) in those CL40). DISCUSSION: Early, Aß-mediated cognitive slowing was detected for processing speed measures, while early memory retrieval declines were associated with emerging Aß and tau pathology. Composites of these measures may help determine whether anti-Aß or anti-tau therapies administered at the first signs of pathology might preserve cognitive function. CLASSIFICATION OF EVIDENCE: This study provides Class I evidence that in clinically normal older adults, emerging PET-detected AD pathology is associated with declining processing speeds and memory retrieval.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Aged , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Brain/pathology , Cognition , Cognitive Dysfunction/pathology , Humans , Positron-Emission Tomography , tau Proteins/metabolism
15.
J Alzheimers Dis ; 86(4): 1603-1609, 2022.
Article in English | MEDLINE | ID: mdl-35213372

ABSTRACT

The brainstem is among the first regions to accumulate Alzheimer's disease (AD)-related hyperphosphorylated tau pathology during aging. We aimed to examine associations between brainstem volume and neocortical amyloid-ß or tau pathology in 271 middle-aged clinically normal individuals of the Framingham Heart Study who underwent MRI and PET imaging. Lower volume of the medulla, pons, or midbrain was associated with greater neocortical amyloid burden. No associations were detected between brainstem volumes and tau deposition. Our results support the hypothesis that lower brainstem volumes are associated with initial AD-related processes and may signal preclinical AD pathology.


Subject(s)
Alzheimer Disease , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Brain Stem/pathology , Humans , Longitudinal Studies , Middle Aged , tau Proteins/metabolism
16.
Lancet Neurol ; 21(2): 140-152, 2022 02.
Article in English | MEDLINE | ID: mdl-35065037

ABSTRACT

BACKGROUND: Insights gained from studying individuals with autosomal dominant Alzheimer's disease have broadly influenced mechanistic hypotheses, biomarker development, and clinical trials in both sporadic and dominantly inherited Alzheimer's disease. Although pathogenic variants causing autosomal dominant Alzheimer's disease are highly penetrant, there is substantial heterogeneity in levels of amyloid ß (Aß) between individuals. We aimed to examine whether this heterogeneity is related to disease progression and to investigate the association with mutation location within PSEN1, PSEN2, or APP. METHODS: We did cross-sectional and longitudinal analyses of data from the Dominantly Inherited Alzheimer's Network (DIAN) observational study, which enrols individuals from families affected by autosomal dominant Alzheimer's disease. 340 participants in the DIAN study who were aged 18 years or older, had a history of autosomal dominant Alzheimer's disease in their family, and who were enrolled between September, 2008, and June, 2019, were included in our analysis. 206 participants were carriers of pathogenic mutations in PSEN1, PSEN2, or APP, and 134 were non-carriers. 62 unique pathogenic variants were identified in the cohort and were grouped in two ways. First, we sorted variants in PSEN1, PSEN2, or APP by the affected protein domain. Second, we divided PSEN1 variants according to position before or after codon 200. We examined variant-dependent variability in Aß biomarkers, specifically Pittsburgh-Compound-B PET (PiB-PET) signal, levels of CSF Aß1-42 (Aß42), and levels of Aß1-40 (Aß40). FINDINGS: Cortical and striatal PiB-PET signal showed striking variant-dependent variability using both grouping approaches (p<0·0001), despite similar progression on the clinical dementia rating (p>0·7), and CSF Aß42 levels (codon-based grouping: p=0·49; domain-based grouping: p=0·095). Longitudinal PiB-PET signal also varied across codon-based groups, mirroring cross-sectional analyses. INTERPRETATION: Autosomal dominant Alzheimer's disease pathogenic variants showed highly differential temporal and regional patterns of PiB-PET signal, despite similar functional progression. These findings suggest that although increased PiB-PET signal is generally seen in autosomal dominant Alzheimer's disease, higher levels of PiB-PET signal at an individual level might not reflect more severe or more advanced disease. Our results have high relevance for ongoing clinical trials in autosomal dominant Alzheimer's disease, including those using Aß PET as a surrogate marker of disease progression. Additionally, and pertinent to both sporadic and autosomal dominant Alzheimer's disease, our results suggest that CSF and PET measures of Aß levels are not interchangeable and might reflect different Aß-driven pathobiological processes. FUNDING: National Institute on Aging, Doris Duke Charitable Foundation, German Center for Neurodegenerative Diseases, Japanese Agency for Medical Research and Development.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Adolescent , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Amyloid beta-Peptides/genetics , Amyloid beta-Peptides/metabolism , Biomarkers , Cross-Sectional Studies , Heterozygote , Humans , Positron-Emission Tomography
17.
Neurology ; 2021 May 05.
Article in English | MEDLINE | ID: mdl-33952655

ABSTRACT

OBJECTIVE: To compare how structural MRI, Fluorodeoxyglucose (FDG), and Flortaucipir (FTP) PET signal predict cognitive decline in high-amyloid versus low-amyloid participants with the goal of determining which biomarker combination would result in the highest increase of statistical power for prevention trials. METHODS: In this prospective cohort study, we analyzed data from clinically-normal adults from the Harvard Aging Brain Study with MRI, FDG, FTP, and PiB-PET acquired within a year, and prospective cognitive evaluations over a mean three-year follow-up. We focused analyses on pre-defined regions-of-interest: inferior temporal, isthmus cingulate, hippocampus, and entorhinal cortex. Cognition was assessed using the Preclinical Alzheimer's Cognitive Composite (PACC5). We evaluated the association between biomarkers and cognitive decline using linear-mixed-effect models with random intercepts and slopes, adjusting for demographics. We generated power curves simulating prevention trials. RESULTS: Data from 131 participants [52 females, 73.98±8.29 years old] were analyzed in the study. In separate models, most biomarkers had a closer association with cognitive decline in the high-PiB compared to the low-PiB participants. A backward stepwise regression including all biomarkers demonstrated that only neocortical PiB, entorhinal FTP, and entorhinal FDG were independent predictors of subsequent cognitive decline. Power analyses revealed that using both high-PiB and low entorhinal FDG as inclusion criteria reduced 3-fold the number of participants needed in a hypothetical trial compared to using only high-PiB. DISCUSSION: In preclinical Alzheimer's disease, entorhinal hypometabolism is a strong and independent predictor of subsequent cognitive decline, making FDG a potentially useful biomarker to increase power in clinical trials. CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that in people with preclinical Alzheimer's disease, entorhinal hypometabolism identified by FDG-PET is predictive of subsequent cognitive decline.

18.
EClinicalMedicine ; 35: 100848, 2021 May.
Article in English | MEDLINE | ID: mdl-33997742

ABSTRACT

BACKGROUND: In the COVID-19 pandemic, older adults from vulnerable ethnoracial groups are at high risk of infection, hospitalization, and death. We aimed to explore the pandemic's impact on the well-being and cognition of older adults living in the United States (US), Argentina, Chile, Mexico, and Peru. METHODS: 1,608 (646 White, 852 Latino, 77 Black, 33 Asian; 72% female) individuals from the US and four Latin American countries aged ≥ 55 years completed an online survey regarding well-being and cognition during the pandemic between May and September 2020. Outcome variables (pandemic impact, discrimination, loneliness, purpose of life, subjective cognitive concerns) were compared across four US ethnoracial groups and older adults living in Argentina, Chile, Mexico, and Peru. FINDINGS: Mean age for all participants was 66.7 (SD = 7.7) years and mean education was 15.4 (SD = 2.7) years. Compared to Whites, Latinos living in the US reported greater economic impact (p < .001, ηp 2  = 0.031); while Blacks reported experiencing discrimination more often (p < .001, ηp 2  = 0.050). Blacks and Latinos reported more positive coping (p < .001, ηp 2  = 0.040). Compared to Latinos living in the US, Latinos in Chile, Mexico, and Peru reported greater pandemic impact, Latinos in Mexico and Peru reported more positive coping, Latinos in Argentina, Mexico, and Peru had greater economic impact, and Latinos in Argentina, Chile, and Peru reported less discrimination. INTERPRETATION: The COVID-19 pandemic has differentially impacted the well-being of older ethnically diverse individuals in the US and Latin America. Future studies should examine how mediators like income and coping skills modify the pandemic's impact. FUNDING: Massachusetts General Hospital Department of Psychiatry.

19.
Sci Transl Med ; 13(577)2021 01 20.
Article in English | MEDLINE | ID: mdl-33472953

ABSTRACT

Advances in molecular positron emission tomography (PET) have enabled anatomic tracking of brain pathology in longitudinal studies of normal aging and dementia, including assessment of the central model of Alzheimer's disease (AD) pathogenesis, according to which TAU pathology begins focally but expands catastrophically under the influence of amyloid-ß (Aß) pathology to mediate neurodegeneration and cognitive decline. Initial TAU deposition occurs many years before Aß in a specific area of the medial temporal lobe. Building on recent work that enabled focus of molecular PET measurements on specific TAU-vulnerable convolutional temporal lobe anatomy, we applied an automated anatomic sampling method to quantify TAU PET signal in 443 adult participants from several observational studies of aging and AD, spanning a wide range of ages, Aß burdens, and degrees of clinical impairment. We detected initial cortical emergence of tauopathy near the rhinal sulcus in clinically normal people and, in a subset with longitudinal 2-year follow-up data (n = 104), tracked Aß-associated spread of TAU from this site first to nearby neocortex of the temporal lobe and then to extratemporal regions. Greater rate of TAU spread was associated with baseline measures of both global Aß burden and medial temporal lobe TAU. These findings are consistent with clinicopathological correlation studies of Alzheimer's tauopathy and enable precise tracking of AD-related TAU progression for natural history studies and prevention therapeutic trials.


Subject(s)
Alzheimer Disease , Tauopathies , Adult , Alzheimer Disease/diagnostic imaging , Amyloid beta-Peptides , Humans , Positron-Emission Tomography , Tauopathies/diagnostic imaging , tau Proteins
20.
Alzheimers Res Ther ; 13(1): 27, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33451357

ABSTRACT

BACKGROUND: Neuroimaging studies of autosomal dominant Alzheimer's disease (ADAD) enable characterization of the trajectories of cerebral amyloid-ß (Aß) and tau accumulation in the decades prior to clinical symptom onset. Longitudinal rates of regional tau accumulation measured with positron emission tomography (PET) and their relationship with other biomarker and cognitive changes remain to be fully characterized in ADAD. METHODS: Fourteen ADAD mutation carriers (Presenilin-1 E280A) and 15 age-matched non-carriers from the Colombian kindred underwent 2-3 sessions of Aß (11C-Pittsburgh compound B) and tau (18F-flortaucipir) PET, structural magnetic resonance imaging, and neuropsychological evaluation over a 2-4-year follow-up period. Annualized rates of change for imaging and cognitive variables were compared between carriers and non-carriers, and relationships among baseline measurements and rates of change were assessed within carriers. RESULTS: Longitudinal measurements were consistent with a sequence of ADAD-related changes beginning with Aß accumulation (16 years prior to expected symptom onset, EYO), followed by entorhinal cortex (EC) tau (9 EYO), neocortical tau (6 EYO), hippocampal atrophy (6 EYO), and cognitive decline (4 EYO). Rates of tau accumulation among carriers were most rapid in parietal neocortex (~ 9%/year). EC tau PET signal at baseline was a significant predictor of subsequent neocortical tau accumulation and cognitive decline within carriers. CONCLUSIONS: Our results are consistent with the sequence of biological changes in ADAD implied by cross-sectional studies and highlight the importance of EC tau as an early biomarker and a potential link between Aß burden and neocortical tau accumulation in ADAD.


Subject(s)
Alzheimer Disease , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/genetics , Amyloid beta-Peptides , Biomarkers , Boston , Colombia , Cross-Sectional Studies , Humans , Magnetic Resonance Imaging , Positron-Emission Tomography , tau Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...