Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
1.
Sci Total Environ ; 937: 173321, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38782287

ABSTRACT

The future performance of the widely abundant European beech (Fagus sylvatica L.) across its ecological amplitude is uncertain. Although beech is considered drought-sensitive and thus negatively affected by drought events, scientific evidence indicating increasing drought vulnerability under climate change on a cross-regional scale remains elusive. While evaluating changes in climate sensitivity of secondary growth offers a promising avenue, studies from productive, closed-canopy forests suffer from knowledge gaps, especially regarding the natural variability of climate sensitivity and how it relates to radial growth as an indicator of tree vitality. Since beech is sensitive to drought, we in this study use a drought index as a climate variable to account for the combined effects of temperature and water availability and explore how the drought sensitivity of secondary growth varies temporally in dependence on growth variability, growth trends, and climatic water availability across the species' ecological amplitude. Our results show that drought sensitivity is highly variable and non-stationary, though consistently higher at dry sites compared to moist sites. Increasing drought sensitivity can largely be explained by increasing climatic aridity, especially as it is exacerbated by climate change and trees' rank progression within forest communities, as (co-)dominant trees are more sensitive to extra-canopy climatic conditions than trees embedded in understories. However, during the driest periods of the 20th century, growth showed clear signs of being decoupled from climate. This may indicate fundamental changes in system behavior and be early-warning signals of decreasing drought tolerance. The multiple significant interaction terms in our model elucidate the complexity of European beech's drought sensitivity, which needs to be taken into consideration when assessing this species' response to climate change.


Subject(s)
Climate Change , Droughts , Fagus , Fagus/growth & development , Fagus/physiology , Forests , Trees/growth & development , Trees/physiology
2.
Int J Antimicrob Agents ; 64(1): 107181, 2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38653351

ABSTRACT

BACKGROUND: The aminoglycoside apramycin has been proposed as a drug candidate for the treatment of critical Gram-negative systemic infections. However, the potential of apramycin in the treatment of drug-resistant bloodstream infections (BSIs) has not yet been assessed. METHODS: The resistance gene annotations of 40 888 blood-culture isolates were analysed. In vitro profiling of apramycin comprised cell-free translation assays, broth microdilution, and frequency of resistance determination. The efficacy of apramycin was studied in a mouse peritonitis model for a total of nine Escherichia coli and Klebsiella pneumoniae isolates. RESULTS: Genotypic aminoglycoside resistance was identified in 87.8% of all 6973 carbapenem-resistant Enterobacterales blood-culture isolates, colistin resistance was shown in 46.4% and apramycin in 2.1%. Apramycin activity against methylated ribosomes was > 100-fold higher than that for other aminoglycosides. Frequencies of resistance were < 10-9 at 8 × minimum inhibitory concentration (MIC). Tentative epidemiological cut-offs (TECOFFs) were determined as 8 µg/mL for E. coli and 4 µg/mL for K. pneumoniae. A single dose of 5 to 13 mg/kg resulted in a 1-log colony-forming unit (CFU) reduction in the blood and peritoneum. Two doses of 80 mg/kg resulted in an exposure that resembles the AUC observed for a single 30 mg/kg dose in humans and led to complete eradication of carbapenem- and aminoglycoside-resistant bacteraemia. CONCLUSION: Encouraging coverage and potent in vivo efficacy against a selection of highly drug-resistant Enterobacterales isolates in the mouse peritonitis model warrants the conduct of clinical studies to validate apramycin as a drug candidate for the prophylaxis and treatment of BSI.

3.
Front Cardiovasc Med ; 11: 1336291, 2024.
Article in English | MEDLINE | ID: mdl-38380178

ABSTRACT

Background: Evidence of the association between AMplitude Spectral Area (AMSA) of ventricular fibrillation and outcome after out-of-hospital cardiac arrest (OHCA) is limited to short-term follow-up. In this study, we assess whether AMSA can stratify the risk of death or poor neurological outcome at 30 days and 1 year after OHCA in patients with an initial shockable rhythm or with an initial non-shockable rhythm converted to a shockable one. Methods: This is a multicentre retrospective study of prospectively collected data in two European Utstein-based OHCA registries. We included all cases of OHCAs with at least one manual defibrillation. AMSA values were calculated after data extraction from the monitors/defibrillators used in the field by using a 2-s pre-shock electrocardiogram interval. The first detected AMSA value, the maximum value, the average value, and the minimum value were computed, and their outcome prediction accuracy was compared. Multivariable Cox regression models were run for both 30-day and 1-year deaths or poor neurological outcomes. Neurological cerebral performance category 1-2 was considered a good neurological outcome. Results: Out of the 578 patients included, 494 (85%) died and 10 (2%) had a poor neurological outcome at 30 days. All the AMSA values considered (first value, maximum, average, and minimum) were significantly higher in survivors with good neurological outcome at 30 days. The average AMSA showed the highest area under the receiver operating characteristic curve (0.778, 95% CI: 0.7-0.8, p < 0.001). After correction for confounders, the highest tertiles of average AMSA (T3 and T2) were significantly associated with a lower risk of death or poor neurological outcome compared with T1 both at 30 days (T2: HR 0.6, 95% CI: 0.4-0.9, p = 0.01; T3: HR 0.6, 95% CI: 0.4-0.9, p = 0.02) and at 1 year (T2: HR 0.6, 95% CI: 0.4-0.9, p = 0.01; T3: HR 0.6, 95% CI: 0.4-0.9, p = 0.01). Among survivors at 30 days, a higher AMSA was associated with a lower risk of mortality or poor neurological outcome at 1 year (T3: HR 0.03, 95% CI: 0-0.3, p = 0.02). Discussion: Lower AMSA values were significantly and independently associated with the risk of death or poor neurological outcome at 30 days and at 1 year in OHCA patients with either an initial shockable rhythm or a conversion rhythm from non-shockable to shockable. The average AMSA value had the strongest association with prognosis.

4.
BMC Genomics ; 25(1): 9, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38166623

ABSTRACT

BACKGROUND: Planting tested forest reproductive material is crucial to ensure the increased resilience of intensively managed productive stands for timber and wood product markets under climate change scenarios. Single-step Genomic Best Linear Unbiased Prediction (ssGBLUP) analysis is a cost-effective option for using genomic tools to enhance the accuracy of predicted breeding values and genetic parameter estimation in forest tree species. Here, we tested the efficiency of ssGBLUP in a tropical multipurpose tree species, Cordia africana, by partial population genotyping. A total of 8070 trees from three breeding seedling orchards (BSOs) were phenotyped for height. We genotyped 6.1% of the phenotyped individuals with 4373 single nucleotide polymorphisms. The results of ssGBLUP were compared with pedigree-based best linear unbiased prediction (ABLUP) and genomic best linear unbiased prediction (GBLUP), based on genetic parameters, theoretical accuracy of breeding values, selection candidate ranking, genetic gain, and predictive accuracy and prediction bias. RESULTS: Genotyping a subset of the study population provided insights into the level of relatedness in BSOs, allowing better genetic management. Due to the inbreeding detected within the genotyped provenances, we estimated genetic parameters both with and without accounting for inbreeding. The ssGBLUP model showed improved performance in terms of additive genetic variance and theoretical breeding value accuracy. Similarly, ssGBLUP showed improved predictive accuracy and lower bias than the pedigree-based relationship matrix (ABLUP). CONCLUSIONS: This study of C. africana, a species in decline due to deforestation and selective logging, revealed inbreeding depression. The provenance exhibiting the highest level of inbreeding had the poorest overall performance. The use of different relationship matrices and accounting for inbreeding did not substantially affect the ranking of candidate individuals. This is the first study of this approach in a tropical multipurpose tree species, and the analysed BSOs represent the primary effort to breed C. africana.


Subject(s)
Cordia , Trees , Humans , Trees/genetics , Plant Breeding , Genome , Genomics/methods , Genotype , Phenotype , Models, Genetic
5.
Data Brief ; 50: 109560, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37753259

ABSTRACT

In-field data were collected in Costa Rica between 2018-2021 on newly planted grafted and non-grafted coffee plants grown under artificial shade nets and across an elevation gradient (1050, 1250 and 1450 m.a.s.l). The coffee plants consisted of Coffea arabica F1 hybrid plants ('H3 i.e. Caturra cv. X Ethiopian 531'), which were derived from a somatic embryogenesis clonal propagation process, an American C. arabica pure line ('Villa Sarchi') and C. canephora 'Nemaya' (the latter two both being produced by seed). Data from eight different coffee types (including these three genotypes) and different grafting combinations (including reverse and auto-grafting) were collected. Data concerned plant traits such as grafting compatibility (plant collar diameters above and below graft union), agronomic characteristics (aerial and root traits), leaf ecophysiology (leaf gas-exchange and chlorophyll fluorescence), yield and quality attributes (bean size, peaberry percentage, WB100 and SCA note). Climate data were also included for comparison on the farm plots along the elevation gradient. Linear mixed models were used to test for effects of elevation (test sites), coffee types (grafted or non-grafted combinations) and interaction between coffee types and elevations. Least square mean estimates were calculated for significant fixed effects and Tukey tests applied for pairwise tests. A tangential hyperbola curve was used to analyse leaf gas-exchange data. These datasets and R scripts can be re-used as a guide for future analyses concerning coffee agronomy or eco-physiological interactions for other plant species. Other potential re-uses could be meta-analyses aimed at comparing coffee yield, quality, or other agronomic traits across different environmental conditions (such as under shade of an agroforestry system or across different elevation sites).

6.
Intern Emerg Med ; 18(8): 2397-2405, 2023 11.
Article in English | MEDLINE | ID: mdl-37556074

ABSTRACT

The optimal energy for defibrillation has not yet been identified and very often the maximum energy is delivered. We sought to assess whether amplitude spectral area (AMSA) of ventricular fibrillation (VF) could predict low energy level defibrillation success in out-of-hospital cardiac arrest (OHCA) patients. This is a multicentre international study based on retrospective analysis of prospectively collected data. We included all OHCAs with at least one manual defibrillation. AMSA values were calculated by analyzing the data collected by the monitors/defibrillators used in the field (Corpuls 3 and Lifepak 12/15) and using a 2-s-pre-shock electrocardiogram interval. We run two different analyses dividing the shocks into three tertiles (T1, T2, T3) based on AMSA values. 629 OHCAs were included and 2095 shocks delivered (energy ranging from 100 to 360 J; median 200 J). Both in the "extremes analysis" and in the "by site analysis", the AMSA values of the effective shocks at low energy were significantly higher than those at high energy (p = 0.01). The likelihood of shock success increased significantly from the lowest to the highest tertile. After correction for age, call to shock time, use of mechanical CPR, presence of bystander CPR, sex and energy level, high AMSA value was directly associated with the probability of shock success [T2 vs T1 OR 3.8 (95% CI 2.5-6) p < 0.001; T3 vs T1 OR 12.7 (95% CI 8.2-19.2), p < 0.001]. AMSA values are associated with the probability of low-energy shock success so that they could guide energy optimization in shockable cardiac arrest patients.


Subject(s)
Cardiopulmonary Resuscitation , Out-of-Hospital Cardiac Arrest , Humans , Ventricular Fibrillation/therapy , Electric Countershock , Out-of-Hospital Cardiac Arrest/therapy , Out-of-Hospital Cardiac Arrest/complications , Retrospective Studies , Amsacrine , Electrocardiography
7.
Front Cardiovasc Med ; 10: 1179815, 2023.
Article in English | MEDLINE | ID: mdl-37255711

ABSTRACT

Objective: Antiarrhythmic drugs are recommended for out of hospital cardiac arrest (OHCA) with shock-refractory ventricular fibrillation (VF). Amplitude Spectral Area (AMSA) of VF is a quantitative waveform measure that describes the amplitude-weighted mean frequency of VF, it correlates with intramyocardial adenosine triphosphate (ATP) concentration, it is a predictor of shock efficacy and an emerging indicator to guide defibrillation and resuscitation efforts. How AMSA might be influenced by amiodarone administration is unknown. Methods: In this international multicentre observational study, all OHCAs receiving at least one shock were included. AMSA values were calculated by retrospectively analysing the pre-shock ECG interval of 2 s. Multivariable models were run and a propensity score based on the probability of receiving amiodarone was created to compare two randomly matched samples. Results: 2,077 shocks were included: 1,407 in the amiodarone group and 670 in the non-amiodarone group. AMSA values were lower in the amiodarone group [8.8 (6-12.7) mV·Hz vs. 9.8 (6-14) mV·Hz, p = 0.035]. In two randomly matched propensity score-based groups of 261 shocks, AMSA was lower in the amiodarone group [8.2 (5.8-13.5) mV·Hz vs. 9.6 (5.6-11.6), p = 0.042]. AMSA was a predictor of shock success in both groups but the predictive power was lower in the amiodarone group [Area Under the Curve (AUC) non-amiodarone group 0.812, 95%CI: 0.78-0.841 vs. AUC amiodarone group 0.706, 95%CI: 0.68-0.73; p < 0.001]. Conclusions: Amiodarone administration was independently associated with the probability of recording lower values of AMSA. In patients who have received amiodarone during cardiac arrest the predictive value of AMSA for shock success is significantly lower, but still statistically significant.

8.
Anim Microbiome ; 5(1): 21, 2023 Apr 04.
Article in English | MEDLINE | ID: mdl-37016467

ABSTRACT

BACKGROUND: Yeasts are gaining attention as alternative ingredients in aquafeeds. However, the impact of yeast inclusion on modulation of intestinal microbiota of fish fed plant-based ingredients is limited. Thus, the present study investigates the effects of yeast and processing on composition, diversity and predicted metabolic capacity of gut microbiota of Atlantic salmon smolt fed soybean meal (SBM)-based diet. Two yeasts, Cyberlindnera jadinii (CJ) and Wickerhamomyces anomalus (WA), were produced in-house and processed by direct heat-inactivation with spray-drying (ICJ and IWA) or autolyzed at 50 °C for 16 h, followed by spray-drying (ACJ and AWA). In a 42-day feeding experiment, fish were fed one of six diets: a fishmeal (FM)-based diet, a challenging diet with 30% SBM and four other diets containing 30% SBM and 10% of each of the four yeast products (i.e., ICJ, ACJ, IWA and AWA). Microbial profiling of digesta samples was conducted using 16S rRNA gene sequencing, and the predicted metabolic capacities of gut microbiota were determined using genome-scale metabolic models. RESULTS: The microbial composition and predicted metabolic capacity of gut microbiota differed between fish fed FM diet and those fed SBM diet. The digesta of fish fed SBM diet was dominated by members of lactic acid bacteria, which was similar to microbial composition in the digesta of fish fed the inactivated yeasts (ICJ and IWA diets). Inclusion of autolyzed yeasts (ACJ and AWA diets) reduced the richness and diversity of gut microbiota in fish. The gut microbiota of fish fed ACJ diet was dominated by the genus Pediococcus and showed a predicted increase in mucin O-glycan degradation compared with the other diets. The gut microbiota of fish fed AWA diet was highly dominated by the family Bacillaceae. CONCLUSIONS: The present study showed that dietary inclusion of FM and SBM differentially modulate the composition and predicted metabolic capacity of gut microbiota of fish. The inclusion of inactivated yeasts did not alter the modulation caused by SBM-based diet. Fish fed ACJ diet increased relative abundance of Pediococcus, and mucin O-glycan degradation pathway compared with the other diets.

9.
Front Microbiol ; 13: 988725, 2022.
Article in English | MEDLINE | ID: mdl-36160186

ABSTRACT

The rise in antimicrobial resistance (AMR), and increase in treatment-refractory AMR infections, generates an urgent need to accelerate the discovery and development of novel anti-infectives. Preclinical animal models play a crucial role in assessing the efficacy of novel drugs, informing human dosing regimens and progressing drug candidates into the clinic. The Innovative Medicines Initiative-funded "Collaboration for prevention and treatment of MDR bacterial infections" (COMBINE) consortium is establishing a validated and globally harmonized preclinical model to increase reproducibility and more reliably translate results from animals to humans. Toward this goal, in April 2021, COMBINE organized the expert workshop "Advancing toward a standardized murine model to evaluate treatments for AMR lung infections". This workshop explored the conduct and interpretation of mouse infection models, with presentations on PK/PD and efficacy studies of small molecule antibiotics, combination treatments (ß-lactam/ß-lactamase inhibitor), bacteriophage therapy, monoclonal antibodies and iron sequestering molecules, with a focus on the major Gram-negative AMR respiratory pathogens Pseudomonas aeruginosa, Klebsiella pneumoniae and Acinetobacter baumannii. Here we summarize the factors of variability that we identified in murine lung infection models used for antimicrobial efficacy testing, as well as the workshop presentations, panel discussions and the survey results for the harmonization of key experimental parameters. The resulting recommendations for standard design parameters are presented in this document and will provide the basis for the development of a harmonized and bench-marked efficacy studies in preclinical murine pneumonia model.

10.
Front Microbiol ; 13: 988728, 2022.
Article in English | MEDLINE | ID: mdl-36160241

ABSTRACT

Antimicrobial resistance has become one of the greatest threats to human health, and new antibacterial treatments are urgently needed. As a tool to develop novel therapies, animal models are essential to bridge the gap between preclinical and clinical research. However, despite common usage of in vivo models that mimic clinical infection, translational challenges remain high. Standardization of in vivo models is deemed necessary to improve the robustness and reproducibility of preclinical studies and thus translational research. The European Innovative Medicines Initiative (IMI)-funded "Collaboration for prevention and treatment of MDR bacterial infections" (COMBINE) consortium, aims to develop a standardized, quality-controlled murine pneumonia model for preclinical efficacy testing of novel anti-infective candidates and to improve tools for the translation of preclinical data to the clinic. In this review of murine pneumonia model data published in the last 10 years, we present our findings of considerable variability in the protocols employed for testing the efficacy of antimicrobial compounds using this in vivo model. Based on specific inclusion criteria, fifty-three studies focusing on antimicrobial assessment against Pseudomonas aeruginosa, Klebsiella pneumoniae and Acinetobacter baumannii were reviewed in detail. The data revealed marked differences in the experimental design of the murine pneumonia models employed in the literature. Notably, several differences were observed in variables that are expected to impact the obtained results, such as the immune status of the animals, the age, infection route and sample processing, highlighting the necessity of a standardized model.

11.
Clin Transl Med ; 12(5): e790, 2022 05.
Article in English | MEDLINE | ID: mdl-35522900

ABSTRACT

BACKGROUND: In patients with atopic dermatitis (AD), Staphylococcus aureus frequently colonizes lesions and is hypothesized to be linked to disease severity and progression. Treatments that reduce S. aureus colonization without significantly affecting the skin commensal microbiota are needed. METHODS AND FINDINGS: In this study, we tested ATx201 (niclosamide), a small molecule, on its efficacy to reduce S. aureus and propensity to evolve resistance in vitro. Various cutaneous formulations were then tested in a superficial skin infection model. Finally, a Phase 2 randomized, double-blind and placebo-controlled trial was performed to investigate the impact of ATx201 OINTMENT 2% on S. aureus colonization and skin microbiome composition in patients with mild-to-severe AD (EudraCT:2016-003501-33). ATx201 has a narrow minimal inhibitory concentration distribution (.125-.5 µg/ml) consistent with its mode of action - targeting the proton motive force effectively stopping cell growth. In murine models, ATx201 can effectively treat superficial skin infections of methicillin-resistant S. aureus. In a Phase 2 trial in patients with mild-to-severe AD (N = 36), twice-daily treatment with ATx201 OINTMENT 2% effectively reduces S. aureus colonization in quantitative colony forming unit (CFU) analysis (primary endpoint: 94.4% active vs. 38.9% vehicle success rate, p = .0016) and increases the Shannon diversity of the skin microbiome at day 7 significantly compared to vehicle. CONCLUSION: These results suggest that ATx201 could become a new treatment modality as a decolonizing agent.


Subject(s)
Dermatitis, Atopic , Methicillin-Resistant Staphylococcus aureus , Microbiota , Staphylococcal Infections , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Dermatitis, Atopic/drug therapy , Dermatitis, Atopic/pathology , Humans , Mice , Niclosamide/pharmacology , Ointments/pharmacology , Staphylococcal Infections/drug therapy , Staphylococcus aureus
12.
Clin Microbiol Infect ; 28(10): 1367-1374, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35598857

ABSTRACT

OBJECTIVES: New drugs and methods to efficiently fight carbapenem-resistant gram-negative pathogens are sorely needed. In this study, we characterized the preclinical pharmacokinetics (PK) and pharmacodynamics of the clinical stage drug candidate apramycin in time kill and mouse lung infection models. Based on in vitro and in vivo data, we developed a mathematical model to predict human efficacy. METHODS: Three pneumonia-inducing gram-negative species Acinetobacter baumannii, Pseudomonas aeruginosa, and Klebsiella pneumoniae were studied. Bactericidal kinetics were evaluated with time-kill curves; in vivo PK were studied in healthy and infected mice, with sampling in plasma and epithelial lining fluid after subcutaneous administration; in vivo efficacy was measured in a neutropenic mouse pneumonia model. A pharmacokinetic-pharmacodynamic model, integrating all the data, was developed and simulations were performed. RESULTS: Good lung penetration of apramycin in epithelial lining fluid (ELF) was shown (area under the curve (AUC)ELF/AUCplasma = 88%). Plasma clearance was 48% lower in lung infected mice compared to healthy mice. For two out of five strains studied, a delay in growth (∼5 h) was observed in vivo but not in vitro. The mathematical model enabled integration of lung PK to drive mouse PK and pharmacodynamics. Simulations predicted that 30 mg/kg of apramycin once daily would result in bacteriostasis in patients. DISCUSSION: Apramycin is a candidate for treatment of carbapenem-resistant gram-negative pneumonia as demonstrated in an integrated modeling framework for three bacterial species. We show that mathematical modelling is a useful tool for simultaneous inclusion of multiple data sources, notably plasma and lung in vivo PK and simulation of expected scenarios in a clinical setting, notably lung infections.


Subject(s)
Pneumonia, Bacterial , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Carbapenems/therapeutic use , Humans , Lung/microbiology , Mice , Microbial Sensitivity Tests , Nebramycin/analogs & derivatives , Pneumonia, Bacterial/drug therapy
13.
Int J Mol Sci ; 23(3)2022 Jan 31.
Article in English | MEDLINE | ID: mdl-35163597

ABSTRACT

The objective of the current study was to examine the effects of yeasts on intestinal health and transcriptomic profiles from the distal intestine and spleen tissue of Atlantic salmon fed SBM-based diets in seawater. Cyberlindnera jadinii (CJ) and Wickerhamomyces anomalus (WA) yeasts were heat-inactivated with spray-drying (ICJ and IWA) or autolyzed at 50 °C for 16 h (ACJ and AWA), followed by spray-drying. Six diets were formulated, one based on fishmeal (FM), a challenging diet with 30% soybean meal (SBM) and four other diets containing 30% SBM and 10% of each of the four yeast fractions (i.e., ICJ, ACJ, IWA and AWA). The inclusion of CJ yeasts reduced the loss of enterocyte supranuclear vacuolization and reduced the population of CD8α labeled cells present in the lamina propria of fish fed the SBM diet. The CJ yeasts controlled the inflammatory responses of fish fed SBM through up-regulation of pathways related to wound healing and taurine metabolism. The WA yeasts dampened the inflammatory profile of fish fed SBM through down-regulation of pathways related to toll-like receptor signaling, C-lectin receptor, cytokine receptor and signal transduction. This study suggests that the yeast species, Cyberlindnera jadinii and Wickerhamomyces anomalus are novel high-quality protein sources with health-beneficial effects in terms of reducing inflammation associated with feeding plant-based diets to Atlantic salmon.


Subject(s)
Animal Feed , Candida/chemistry , Glycine max/chemistry , Intestines/metabolism , Saccharomycetales/chemistry , Salmo salar/growth & development , Transcriptome , Animals
14.
Anim Microbiome ; 4(1): 9, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-35033208

ABSTRACT

BACKGROUND: Black soldier fly (Hermetia illucens) is a promising insect species to use as a novel ingredient in fish feeds. Black soldier fly larvae consists of three major fractions, namely protein, lipid, and exoskeleton. These fractions contain bioactive compounds that can modulate the gut microbiota in fish such as antimicrobial peptides, lauric acid, and chitin. However, it is not certain how, or which fractions of black solider fly would affect gut microbiota in fish. In the present study, black soldier fly larvae were processed into three different meals (full-fat, defatted and de-chitinized) and two fractions (oil and exoskeleton), and included in diets for Atlantic salmon (Salmo salar). Atlantic salmon pre-smolts were fed with these diets in comparison with a commercial-like control diet for eight weeks to investigate the effects of insect meals and fractions on the composition and predicted metabolic capacity of gut microbiota. The gut microbiota was profiled by 16S rRNA gene sequencing, and the predicted metabolic capacities of gut microbiota were determined using genome-scale metabolic models. RESULTS: The inclusion of insect meals and fractions decreased abundance of Proteobacteria and increased abundance of Firmicutes in salmon gut. The diets that contained insect chitin, i.e., insect meals or exoskeleton diets, increased abundance of chitinolytic bacteria including lactic acid bacteria and Actinomyces in salmon gut, with fish fed full-fat meal diet showing the highest abundances. The diets that contained insect lipids, i.e., insect meals and oil diets enriched Bacillaceae in fish gut. The fish fed diets containing full-fat insect meal had a unique gut microbiota composition dominated by beneficial lactic acid bacteria and Actinomyces, and showed a predicted increase in mucin degradation compared to the other diets. CONCLUSIONS: The present results showed that the dietary inclusion of insect meals and fractions can differently modulate the composition and predicted metabolic capacity of gut microbiota in Atlantic salmon pre-smolts. The use of full-fat black soldier fly larvae meal in diets for salmon is more favorable for beneficial modulation of gut microbiota than larvae processed by separation of lipid or exoskeleton fractions.

15.
Nat Chem ; 14(1): 15-24, 2022 01.
Article in English | MEDLINE | ID: mdl-34903857

ABSTRACT

Carbapenems are vital antibiotics, but their efficacy is increasingly compromised by metallo-ß-lactamases (MBLs). Here we report the discovery and optimization of potent broad-spectrum MBL inhibitors. A high-throughput screen for NDM-1 inhibitors identified indole-2-carboxylates (InCs) as potential ß-lactamase stable ß-lactam mimics. Subsequent structure-activity relationship studies revealed InCs as a new class of potent MBL inhibitor, active against all MBL classes of major clinical relevance. Crystallographic studies revealed a binding mode of the InCs to MBLs that, in some regards, mimics that predicted for intact carbapenems, including with respect to maintenance of the Zn(II)-bound hydroxyl, and in other regards mimics binding observed in MBL-carbapenem product complexes. InCs restore carbapenem activity against multiple drug-resistant Gram-negative bacteria and have a low frequency of resistance. InCs also have a good in vivo safety profile, and when combined with meropenem show a strong in vivo efficacy in peritonitis and thigh mouse infection models.


Subject(s)
beta-Lactamase Inhibitors/pharmacology , beta-Lactams/metabolism , Animals , Gram-Negative Bacteria/drug effects , Humans , Mice , Microbial Sensitivity Tests , Protein Binding , Structure-Activity Relationship , beta-Lactamase Inhibitors/chemistry , beta-Lactamase Inhibitors/metabolism
16.
EBioMedicine ; 73: 103652, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34740109

ABSTRACT

BACKGROUND: The clinical-stage drug candidate EBL-1003 (apramycin) represents a distinct new subclass of aminoglycoside antibiotics for the treatment of drug-resistant infections. It has demonstrated best-in-class coverage of resistant isolates, and preclinical efficacy in lung infection models. However, preclinical evidence for its utility in other disease indications has yet to be provided. Here we studied the therapeutic potential of EBL-1003 in the treatment of complicated urinary tract infection and acute pyelonephritis (cUTI/AP). METHODS: A combination of data-base mining, antimicrobial susceptibility testing, time-kill experiments, and four murine infection models was used in a comprehensive assessment of the microbiological coverage and efficacy of EBL-1003 against Gram-negative uropathogens. The pharmacokinetics and renal toxicology of EBL-1003 in rats was studied to assess the therapeutic window of EBL-1003 in the treatment of cUTI/AP. FINDINGS: EBL-1003 demonstrated broad-spectrum activity and rapid multi-log CFU reduction against a phenotypic variety of bacterial uropathogens including aminoglycoside-resistant clinical isolates. The basicity of amines in the apramycin molecule suggested a higher increase in positive charge at urinary pH when compared to gentamicin or amikacin, resulting in sustained drug uptake and bactericidal activity, and consequently in potent efficacy in mouse infection models. Renal pharmacokinetics, biomarkers for toxicity, and kidney histopathology in adult rats all indicated a significantly lower nephrotoxicity of EBL-1003 than of gentamicin. INTERPRETATION: This study provides preclinical proof-of-concept for the efficacy of EBL-1003 in cUTI/AP. Similar efficacy but lower nephrotoxicity of EBL-1003 in comparison to gentamicin may thus translate into a higher safety margin and a wider therapeutic window in the treatment of cUTI/API. FUNDING: A full list of funding bodies that contributed to this study can be found in the Acknowledgements section.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Hydrogen-Ion Concentration , Nebramycin/analogs & derivatives , Pyelonephritis/drug therapy , Urinary Tract Infections/drug therapy , Animals , Anti-Bacterial Agents/pharmacology , Bacterial Infections/drug therapy , Bacterial Infections/microbiology , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Resistance, Multiple, Bacterial/drug effects , Humans , Mice , Microbial Sensitivity Tests , Nebramycin/pharmacology , Nebramycin/therapeutic use , Pyelonephritis/etiology , Rats , Treatment Outcome , Urinary Tract Infections/etiology
17.
Front Immunol ; 12: 708747, 2021.
Article in English | MEDLINE | ID: mdl-34489959

ABSTRACT

Aquaculture feeds have changed dramatically from being largely based on fishmeal (FM) towards increased use of plant protein sources, which could impact the fish's immune response. In order to characterize immunomodulatory properties of novel functional ingredients, this study used four diets, one based on FM, a challenging diet with 40% soybean meal (SBM), and two diets containing 40% SBM with 5% of Cyberlindnera jadinii yeast exposed to different down-stream processing conditions: heat-inactivated (ICJ) or autolysation (ACJ). The immunomodulatory effects of the diets were analyzed in the spleen of Atlantic salmon after 37 days of feeding, using a transcriptomic evaluation by RNA sequencing (RNA-seq) and the detection of specific immunological markers at the protein level through indirect Enzyme-linked Immunosorbent Assay (indirect ELISA). The results showed that SBM (compared to FM) induced a down-regulation of pathways related to ion binding and transport, along with an increase at the protein level of pro-inflammatory cytokines such as tumor necrosis factor alpha (TNFα) and interferon gamma (IFNγ). On the other hand, while ICJ (compared to FM-group) maintain the inflammatory response associated with SBM, with higher levels of TNFα and IFNγ, and with an upregulation of creatine kinase activity and phosphagen metabolic process, the inclusion of ACJ was able to modulate the response of Atlantic salmon compared to fish fed the SBM-diet by the activation of biological pathways related to endocytosis, Pattern recognition receptor (PPRs)-signal transduction and transporter activity. In addition, ACJ was also able to control the pro-inflammatory profile of SBM, increasing Interleukin 10 (IL-10) levels and decreasing TNFα production, triggering an immune response similar to that of fish fed an FM-based diet. Finally, we suggest that the spleen is a good candidate to characterize the immunomodulatory effects of functional ingredients in Atlantic salmon. Moreover, the inclusion of ACJ in fish diets, with the ability to control inflammatory processes, could be considered in the formulation of sustainable salmon feed.


Subject(s)
Animal Feed , Candida , Salmo salar/immunology , Spleen/immunology , Animals , Gene Ontology , Interferon-gamma/analysis , Transcriptome , Tumor Necrosis Factor-alpha/analysis
19.
Scand J Trauma Resusc Emerg Med ; 29(1): 107, 2021 Jul 31.
Article in English | MEDLINE | ID: mdl-34332640

ABSTRACT

BACKGROUND: Calls to emergency medical lines are an essential component in the chain of survival. Operators make critical decisions based on information they elicit from callers. Although smooth cooperation is necessary, the field lacks evidence-based guidelines for how to achieve it while adhering to strict parameters of index-driven questioning. We aimed to evaluate the effect of a training intervention for emergency medical operators at a call centre in Tønsberg, Norway. The course was designed to enhance operators' communication skills for smoothing cooperation with callers. METHODS: Calls were analyzed using inductively developed coding based on the course rationale and content. To evaluate whether the course generated consolidated behavioral change in everyday practice, the independent analyst evaluated 32 calls, selected randomly from eight operators, two calls before and two after course completion. To measure whether skill attainment delayed decision making, we compared the time to the first decision logged by intervention operators to eight control operators. Analysis included 3034 calls: 1375 to intervention operators (T1 = 815; T2 = 560) and 1659 to control operators (T1 = 683; T2 = 976). RESULTS: Operators demonstrated improved behaviours on how they greeted the caller (p < .001), acknowledged the caller (p < .001), and displayed empathy (p = 0.015). No change was found in the use of open-ended questions and agreeing with the caller. Contrary to expectations, operators who took the course logged first decisions more quickly than the control group (p < .001). CONCLUSIONS: This pilot study demonstrated that the training intervention generated behavioural change in these operators, providing justification for scaling up the intervention.


Subject(s)
Emergency Medical Service Communication Systems , Emergency Medical Services , Communication , Emergency Service, Hospital , Humans , Pilot Projects , Telephone
20.
Animals (Basel) ; 11(8)2021 Aug 14.
Article in English | MEDLINE | ID: mdl-34438866

ABSTRACT

Yeast is a microbial feed ingredient that can be produced from non-food biomasses. Brown seaweed contains high levels of complex carbohydrates that are not digested to any extent by monogastric animals but can be used as carbon sources for yeast production. The objective of this study was to investigate how minerals originating from brown macroalgae (Saccharina latissima) are incorporated in Cyberlindnera jadinii yeast and to assess the bioavailability of these different minerals as well as their accumulation into different organs of Atlantic salmon. The yeast C. jadinii was produced on a seaweed hydrolysate mixed with a sugar-rich wood hydrolysate in a 9:1 volume ratio and fed to Atlantic salmon (Salmo salar) in two different experiments: a digestibility experiment with 30% dietary inclusion of yeast and a retention experiment with increasing inclusion of yeast (5, 10, and 20%). Seaweed minerals such as zinc (Zn), copper (Cu), iodine (I), manganese (Mn), and cobalt (Co) were incorporated to a high degree in the yeast. The apparent fecal excretion of minerals was similar in both experiments, in general, with low excretion of, I, bromine (Br), and arsenic (As) (ranging from 18.0% to 63.5%) and high excretion of iron (Fe), Cu, Mn, aluminum (Al), cadmium (Cd) and lead (Pb) (ranging from 56.9% to <100%), despite the different fish size and fecal sampling method. High levels of Cu, I, Br, and Co in the yeast resulted in a linear decrease (p < 0.05) in retention of these minerals in salmon fed increasing levels of yeast. Despite increasing amounts of these minerals in the feed, whole-body levels of Cu and Mn remained stable, whereas whole-body levels of Co, somewhat unexpectedly, decreased with increased dietary yeast inclusion. The Cd from the yeast had low bioavailability but was concentrated more in the kidney (0.038 mg kg-1) and liver (0.025 mg kg-1) than in muscle (0.0009 mg kg-1). The given Cd level in fish strengthens the indication that it is safe to feed salmon with up to 20% inclusion of seaweed yeast without exceeding the maximum limit for Cd of 0.05 mg kg-1 w.w. in fish meat. The level and retention (p < 0.05) of As were lower in the yeast compared to fishmeal. The high level of iodine in S. latissima (3900 mg kg-1) was partly transferred to the yeast, and salmon fed increasing levels of yeast displayed a linear increase in whole-body I content (p < 0.05). There is, however, a need for a growth experiment with larger fish to draw any firm conclusions regarding food safety. Overall, this study shows that yeast grown on hydrolyzed seaweed can be a suitable mineral source for Atlantic salmon, especially when diets are low in fishmeal.

SELECTION OF CITATIONS
SEARCH DETAIL
...