Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Sci Rep ; 14(1): 8315, 2024 04 09.
Article in English | MEDLINE | ID: mdl-38594375

ABSTRACT

Latent autoimmune diabetes in adults (LADA) is a heterogeneous disease characterized by autoantibodies against insulin producing pancreatic beta cells and initial lack of need for insulin treatment. The aim of the present study was to investigate if individuals with LADA have an altered gut microbiota relative to non-diabetic control subjects, individuals with type 1 diabetes (T1D), and individuals with type 2 diabetes (T2D). Bacterial community profiling was performed with primers targeting the variable region 4 of the 16S rRNA gene and sequenced. Amplicon sequence variants (ASVs) were generated with DADA2 and annotated to the SILVA database. The gut virome was sequenced, using a viral particle enrichment and metagenomics approach, assembled, and quantified to describe the composition of the viral community. Comparison of the bacterial alpha- and beta-diversity measures revealed that the gut bacteriome of individuals with LADA resembled that of individuals with T2D. Yet, specific genera were found to differ in abundance in individuals with LADA compared with T1D and T2D, indicating that LADA has unique taxonomical features. The virome composition reflected the stability of the most dominant order Caudovirales and the families Siphoviridae, Podoviridae, and Inoviridae, and the dominant family Microviridae. Further studies are needed to confirm these findings.


Subject(s)
Diabetes Mellitus, Type 1 , Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Glucose Intolerance , Latent Autoimmune Diabetes in Adults , Adult , Humans , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 2/genetics , Latent Autoimmune Diabetes in Adults/genetics , Gastrointestinal Microbiome/genetics , Adenosine Deaminase , RNA, Ribosomal, 16S/genetics , Intercellular Signaling Peptides and Proteins , Insulin
2.
Article in English | MEDLINE | ID: mdl-38686701

ABSTRACT

CONTEXT: The role of glucagon-like peptide-1(GLP-1) in Type 2 diabetes (T2D) and obesity is not fully understood. OBJECTIVE: We investigate the association of cardiometabolic, diet and lifestyle parameters on fasting and postprandial GLP-1 in people at risk of, or living with, T2D. METHOD: We analysed cross-sectional data from the two Innovative Medicines Initiative (IMI) Diabetes Research on Patient Stratification (DIRECT) cohorts, cohort 1(n=2127) individuals at risk of diabetes; cohort 2 (n=789) individuals with new-onset of T2D. RESULTS: Our multiple regression analysis reveals that fasting total GLP-1 is associated with an insulin resistant phenotype and observe a strong independent relationship with male sex, increased adiposity and liver fat particularly in the prediabetes population. In contrast, we showed that incremental GLP-1 decreases with worsening glycaemia, higher adiposity, liver fat, male sex and reduced insulin sensitivity in the prediabetes cohort. Higher fasting total GLP-1 was associated with a low intake of wholegrain, fruit and vegetables inpeople with prediabetes, and with a high intake of red meat and alcohol in people with diabetes. CONCLUSION: These studies provide novel insights into the association between fasting and incremental GLP-1, metabolic traits of diabetes and obesity, and dietary intake and raise intriguing questions regarding the relevance of fasting GLP-1 in the pathophysiology T2D.

3.
Nat Commun ; 14(1): 5062, 2023 08 21.
Article in English | MEDLINE | ID: mdl-37604891

ABSTRACT

We evaluate the shared genetic regulation of mRNA molecules, proteins and metabolites derived from whole blood from 3029 human donors. We find abundant allelic heterogeneity, where multiple variants regulate a particular molecular phenotype, and pleiotropy, where a single variant associates with multiple molecular phenotypes over multiple genomic regions. The highest proportion of share genetic regulation is detected between gene expression and proteins (66.6%), with a further median shared genetic associations across 49 different tissues of 78.3% and 62.4% between plasma proteins and gene expression. We represent the genetic and molecular associations in networks including 2828 known GWAS variants, showing that GWAS variants are more often connected to gene expression in trans than other molecular phenotypes in the network. Our work provides a roadmap to understanding molecular networks and deriving the underlying mechanism of action of GWAS variants using different molecular phenotypes in an accessible tissue.


Subject(s)
Genomics , Multifactorial Inheritance , Humans , Phenotype , RNA, Messenger , Research Personnel
4.
Genome Med ; 15(1): 1, 2023 01 05.
Article in English | MEDLINE | ID: mdl-36604748

ABSTRACT

BACKGROUND: Multiple sclerosis is a chronic immune-mediated disease of the brain and spinal cord resulting in physical and cognitive impairment in young adults. It is hypothesized that a disrupted bacterial and viral gut microbiota is a part of the pathogenesis mediating disease impact through an altered gut microbiota-brain axis. The aim of this study is to explore the characteristics of gut microbiota in multiple sclerosis and to associate it with disease variables, as the etiology of the disease remains only partially known. METHODS: Here, in a case-control setting involving 148 Danish cases with multiple sclerosis and 148 matched healthy control subjects, we performed shotgun sequencing of fecal microbial DNA and associated bacterial and viral microbiota findings with plasma cytokines, blood cell gene expression profiles, and disease activity. RESULTS: We found 61 bacterial species that were differentially abundant when comparing all multiple sclerosis cases with healthy controls, among which 31 species were enriched in cases. A cluster of inflammation markers composed of blood leukocytes, CRP, and blood cell gene expression of IL17A and IL6 was positively associated with a cluster of multiple sclerosis-related species. Bacterial species that were more abundant in cases with disease-active treatment-naïve multiple sclerosis were positively linked to a group of plasma cytokines including IL-22, IL-17A, IFN-ß, IL-33, and TNF-α. The bacterial species richness of treatment-naïve multiple sclerosis cases was associated with number of relapses over a follow-up period of 2 years. However, in non-disease-active cases, we identified two bacterial species, Faecalibacterium prausnitzii and Gordonibacter urolithinfaciens, whose absolute abundance was enriched. These bacteria are known to produce anti-inflammatory metabolites including butyrate and urolithin. In addition, cases with multiple sclerosis had a higher viral species diversity and a higher abundance of Caudovirales bacteriophages. CONCLUSIONS: Considerable aberrations are present in the gut microbiota of patients with multiple sclerosis that are directly associated with blood biomarkers of inflammation, and in treatment-naïve cases bacterial richness is positively associated with disease activity. Yet, the finding of two symbiotic bacterial species in non-disease-active cases that produce favorable immune-modulating compounds provides a rationale for testing these bacteria as adjunct therapeutics in future clinical trials.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Multiple Sclerosis , Young Adult , Humans , Inflammation , Feces/microbiology , Bacteria , Cytokines
5.
Nat Med ; 28(2): 303-314, 2022 02.
Article in English | MEDLINE | ID: mdl-35177860

ABSTRACT

Previous microbiome and metabolome analyses exploring non-communicable diseases have paid scant attention to major confounders of study outcomes, such as common, pre-morbid and co-morbid conditions, or polypharmacy. Here, in the context of ischemic heart disease (IHD), we used a study design that recapitulates disease initiation, escalation and response to treatment over time, mirroring a longitudinal study that would otherwise be difficult to perform given the protracted nature of IHD pathogenesis. We recruited 1,241 middle-aged Europeans, including healthy individuals, individuals with dysmetabolic morbidities (obesity and type 2 diabetes) but lacking overt IHD diagnosis and individuals with IHD at three distinct clinical stages-acute coronary syndrome, chronic IHD and IHD with heart failure-and characterized their phenome, gut metagenome and serum and urine metabolome. We found that about 75% of microbiome and metabolome features that distinguish individuals with IHD from healthy individuals after adjustment for effects of medication and lifestyle are present in individuals exhibiting dysmetabolism, suggesting that major alterations of the gut microbiome and metabolome might begin long before clinical onset of IHD. We further categorized microbiome and metabolome signatures related to prodromal dysmetabolism, specific to IHD in general or to each of its three subtypes or related to escalation or de-escalation of IHD. Discriminant analysis based on specific IHD microbiome and metabolome features could better differentiate individuals with IHD from healthy individuals or metabolically matched individuals as compared to the conventional risk markers, pointing to a pathophysiological relevance of these features.


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Microbiota , Humans , Longitudinal Studies , Metabolome , Middle Aged
6.
Gut ; 71(12): 2463-2480, 2022 12.
Article in English | MEDLINE | ID: mdl-35017197

ABSTRACT

OBJECTIVES: Gut microbiota is a key component in obesity and type 2 diabetes, yet mechanisms and metabolites central to this interaction remain unclear. We examined the human gut microbiome's functional composition in healthy metabolic state and the most severe states of obesity and type 2 diabetes within the MetaCardis cohort. We focused on the role of B vitamins and B7/B8 biotin for regulation of host metabolic state, as these vitamins influence both microbial function and host metabolism and inflammation. DESIGN: We performed metagenomic analyses in 1545 subjects from the MetaCardis cohorts and different murine experiments, including germ-free and antibiotic treated animals, faecal microbiota transfer, bariatric surgery and supplementation with biotin and prebiotics in mice. RESULTS: Severe obesity is associated with an absolute deficiency in bacterial biotin producers and transporters, whose abundances correlate with host metabolic and inflammatory phenotypes. We found suboptimal circulating biotin levels in severe obesity and altered expression of biotin-associated genes in human adipose tissue. In mice, the absence or depletion of gut microbiota by antibiotics confirmed the microbial contribution to host biotin levels. Bariatric surgery, which improves metabolism and inflammation, associates with increased bacterial biotin producers and improved host systemic biotin in humans and mice. Finally, supplementing high-fat diet-fed mice with fructo-oligosaccharides and biotin improves not only the microbiome diversity, but also the potential of bacterial production of biotin and B vitamins, while limiting weight gain and glycaemic deterioration. CONCLUSION: Strategies combining biotin and prebiotic supplementation could help prevent the deterioration of metabolic states in severe obesity. TRIAL REGISTRATION NUMBER: NCT02059538.


Subject(s)
Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Obesity, Morbid , Vitamin B Complex , Humans , Mice , Animals , Prebiotics , Obesity, Morbid/surgery , Biotin/pharmacology , Vitamin B Complex/pharmacology , Mice, Inbred C57BL , Obesity/metabolism , Inflammation
7.
Nature ; 600(7889): 500-505, 2021 12.
Article in English | MEDLINE | ID: mdl-34880489

ABSTRACT

During the transition from a healthy state to cardiometabolic disease, patients become heavily medicated, which leads to an increasingly aberrant gut microbiome and serum metabolome, and complicates biomarker discovery1-5. Here, through integrated multi-omics analyses of 2,173 European residents from the MetaCardis cohort, we show that the explanatory power of drugs for the variability in both host and gut microbiome features exceeds that of disease. We quantify inferred effects of single medications, their combinations as well as additive effects, and show that the latter shift the metabolome and microbiome towards a healthier state, exemplified in synergistic reduction in serum atherogenic lipoproteins by statins combined with aspirin, or enrichment of intestinal Roseburia by diuretic agents combined with beta-blockers. Several antibiotics exhibit a quantitative relationship between the number of courses prescribed and progression towards a microbiome state that is associated with the severity of cardiometabolic disease. We also report a relationship between cardiometabolic drug dosage, improvement in clinical markers and microbiome composition, supporting direct drug effects. Taken together, our computational framework and resulting resources enable the disentanglement of the effects of drugs and disease on host and microbiome features in multimedicated individuals. Furthermore, the robust signatures identified using our framework provide new hypotheses for drug-host-microbiome interactions in cardiometabolic disease.


Subject(s)
Atherosclerosis , Gastrointestinal Microbiome , Microbiota , Clostridiales , Humans , Metabolome
8.
Diabetes ; 70(9): 2092-2106, 2021 09.
Article in English | MEDLINE | ID: mdl-34233929

ABSTRACT

Differences in glucose metabolism among categories of prediabetes have not been systematically investigated. In this longitudinal study, participants (N = 2,111) underwent a 2-h 75-g oral glucose tolerance test (OGTT) at baseline and 48 months. HbA1c was also measured. We classified participants as having isolated prediabetes defect (impaired fasting glucose [IFG], impaired glucose tolerance [IGT], or HbA1c indicative of prediabetes [IA1c]), two defects (IFG+IGT, IFG+IA1c, or IGT+IA1c), or all defects (IFG+IGT+IA1c). ß-Cell function (BCF) and insulin sensitivity were assessed from OGTT. At baseline, in pooling of participants with isolated defects, they showed impairment in both BCF and insulin sensitivity compared with healthy control subjects. Pooled groups with two or three defects showed progressive further deterioration. Among groups with isolated defect, those with IGT showed lower insulin sensitivity, insulin secretion at reference glucose (ISRr), and insulin secretion potentiation (P < 0.002). Conversely, those with IA1c showed higher insulin sensitivity and ISRr (P < 0.0001). Among groups with two defects, we similarly found differences in both BCF and insulin sensitivity. At 48 months, we found higher type 2 diabetes incidence for progressively increasing number of prediabetes defects (odds ratio >2, P < 0.008). In conclusion, the prediabetes groups showed differences in type/degree of glucometabolic impairment. Compared with the pooled group with isolated defects, those with double or triple defect showed progressive differences in diabetes incidence.


Subject(s)
Glucose Intolerance/metabolism , Glucose/metabolism , Glycated Hemoglobin/analysis , Insulin Resistance/physiology , Prediabetic State/metabolism , Adult , Aged , Blood Glucose , Fasting/blood , Female , Glucose Tolerance Test , Humans , Insulin Secretion , Male , Middle Aged , Phenotype
9.
Sci Rep ; 11(1): 13252, 2021 06 24.
Article in English | MEDLINE | ID: mdl-34168163

ABSTRACT

Knowledge about in vivo effects of human circulating C-6 hydroxylated bile acids (BAs), also called muricholic acids, is sparse. It is unsettled if the gut microbiome might contribute to their biosynthesis. Here, we measured a range of serum BAs and related them to markers of human metabolic health and the gut microbiome. We examined 283 non-obese and obese Danish adults from the MetaHit study. Fasting concentrations of serum BAs were quantified using ultra-performance liquid chromatography-tandem mass-spectrometry. The gut microbiome was characterized with shotgun metagenomic sequencing and genome-scale metabolic modeling. We find that tauro- and glycohyocholic acid correlated inversely with body mass index (P = 4.1e-03, P = 1.9e-05, respectively), waist circumference (P = 0.017, P = 1.1e-04, respectively), body fat percentage (P = 2.5e-03, P = 2.3e-06, respectively), insulin resistance (P = 0.051, P = 4.6e-4, respectively), fasting concentrations of triglycerides (P = 0.06, P = 9.2e-4, respectively) and leptin (P = 0.067, P = 9.2e-4). Tauro- and glycohyocholic acids, and tauro-a-muricholic acid were directly linked with a distinct gut microbial community primarily composed of Clostridia species (P = 0.037, P = 0.013, P = 0.027, respectively). We conclude that serum conjugated C-6-hydroxylated BAs associate with measures of human metabolic health and gut communities of Clostridia species. The findings merit preclinical interventions and human feasibility studies to explore the therapeutic potential of these BAs in obesity and type 2 diabetes.


Subject(s)
Bile Acids and Salts/blood , Clostridium/metabolism , Gastrointestinal Microbiome , Adiposity , Body Mass Index , Cholic Acids/blood , Chromatography, High Pressure Liquid , Clostridium/genetics , Deoxycholic Acid/blood , Female , Gastrointestinal Microbiome/genetics , Humans , Logistic Models , Male , Metagenomics , Middle Aged , Obesity/blood , Obesity/microbiology , Tandem Mass Spectrometry , Taurocholic Acid/blood , Waist Circumference
10.
Front Immunol ; 12: 661493, 2021.
Article in English | MEDLINE | ID: mdl-34025661

ABSTRACT

Multiple sclerosis (MS) is a chronic immune-mediated disease characterized by demyelination and neuroaxonal damage in the central nervous system. The etiology is complex and is still not fully understood. Accumulating evidence suggests that our gut microbiota and its metabolites influence the MS pathogenesis. Short-chain fatty acids (SCFAs), such as acetate, propionate and butyrate, are metabolites produced by gut microbiota through fermentation of indigestible carbohydrates. SCFAs and kynurenine metabolites have been shown to have important immunomodulatory properties, and propionate supplementation in MS patients has been associated with long-term clinical improvement. However, the underlying mechanisms of action and its importance in MS remain incompletely understood. We analyzed serum levels of SCFAs and performed targeted metabolomics in relation to biomarkers of inflammation, and clinical and MRI measures in newly diagnosed patients with relapsing-remitting MS before their first disease modifying therapy and healthy controls (HCs). We demonstrated that serum acetate levels were nominally reduced in MS patients compared with HCs. The ratios of acetate/butyrate and acetate/(propionate + butyrate) were significantly lower in MS patients in a multivariate analysis (orthogonal partial least squares discriminant analysis; OPLS-DA). The mentioned ratios and acetate levels correlated negatively with the pro-inflammatory biomarker IFNG, indicating an inverse relation between acetate and inflammation. In contrast, the proportion of butyrate was found higher in MS patients in the multivariate analysis, and both butyrate and valerate correlated positively with proinflammatory cytokines (IFNG and TNF), suggesting complex bidirectional regulatory properties of SCFAs. Branched SCFAs were inversely correlated with clinical disability, at a nominal significance level. Otherwise SCFAs did not correlate with clinical variables or MRI measures. There were signs of an alteration of the kynurenine pathway in MS, and butyrate was positively correlated with the immunomodulatory metabolite 3-hydroxyanthranilic acid. Other variables that influenced the separation between MS and HCs were NfL, ARG1 and IL1R1, D-ribose 5-phosphate, pantothenic acid and D-glucuronic acid. In conclusion, we provide novel results in this rapidly evolving field, emphasizing the complexity of the interactions between SCFAs and inflammation; therefore, further studies are required to clarify these issues before supplementation of SCFAs can be widely recommended.


Subject(s)
Fatty Acids, Volatile/blood , Healthy Volunteers , Inflammation/blood , Multiple Sclerosis, Relapsing-Remitting/blood , Adult , Arginase/genetics , Brain/diagnostic imaging , Cross-Sectional Studies , Cytokines/genetics , Female , Gene Expression , Humans , Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics , Inflammation/genetics , Inflammation/metabolism , Magnetic Resonance Imaging , Male , Metabolomics/methods , Multiple Sclerosis, Relapsing-Remitting/genetics , Multiple Sclerosis, Relapsing-Remitting/metabolism , Receptors, Aryl Hydrocarbon/genetics , Spinal Cord/diagnostic imaging
11.
Nat Genet ; 53(2): 156-165, 2021 02.
Article in English | MEDLINE | ID: mdl-33462485

ABSTRACT

To study the effect of host genetics on gut microbiome composition, the MiBioGen consortium curated and analyzed genome-wide genotypes and 16S fecal microbiome data from 18,340 individuals (24 cohorts). Microbial composition showed high variability across cohorts: only 9 of 410 genera were detected in more than 95% of samples. A genome-wide association study of host genetic variation regarding microbial taxa identified 31 loci affecting the microbiome at a genome-wide significant (P < 5 × 10-8) threshold. One locus, the lactase (LCT) gene locus, reached study-wide significance (genome-wide association study signal: P = 1.28 × 10-20), and it showed an age-dependent association with Bifidobacterium abundance. Other associations were suggestive (1.95 × 10-10 < P < 5 × 10-8) but enriched for taxa showing high heritability and for genes expressed in the intestine and brain. A phenome-wide association study and Mendelian randomization identified enrichment of microbiome trait loci in the metabolic, nutrition and environment domains and suggested the microbiome might have causal effects in ulcerative colitis and rheumatoid arthritis.


Subject(s)
Gastrointestinal Microbiome/physiology , Genetic Variation , Quantitative Trait Loci , Adolescent , Adult , Bifidobacterium/genetics , Child , Child, Preschool , Cohort Studies , Female , Gastrointestinal Microbiome/genetics , Genome-Wide Association Study , Humans , Lactase/genetics , Linkage Disequilibrium , Male , Mendelian Randomization Analysis , Metabolism/genetics , RNA, Ribosomal, 16S
12.
Diabetes Care ; 44(2): 511-518, 2021 02.
Article in English | MEDLINE | ID: mdl-33323478

ABSTRACT

OBJECTIVE: We investigated the processes underlying glycemic deterioration in type 2 diabetes (T2D). RESEARCH DESIGN AND METHODS: A total of 732 recently diagnosed patients with T2D from the Innovative Medicines Initiative Diabetes Research on Patient Stratification (IMI DIRECT) study were extensively phenotyped over 3 years, including measures of insulin sensitivity (OGIS), ß-cell glucose sensitivity (GS), and insulin clearance (CLIm) from mixed meal tests, liver enzymes, lipid profiles, and baseline regional fat from MRI. The associations between the longitudinal metabolic patterns and HbA1c deterioration, adjusted for changes in BMI and in diabetes medications, were assessed via stepwise multivariable linear and logistic regression. RESULTS: Faster HbA1c progression was independently associated with faster deterioration of OGIS and GS and increasing CLIm; visceral or liver fat, HDL-cholesterol, and triglycerides had further independent, though weaker, roles (R 2 = 0.38). A subgroup of patients with a markedly higher progression rate (fast progressors) was clearly distinguishable considering these variables only (discrimination capacity from area under the receiver operating characteristic = 0.94). The proportion of fast progressors was reduced from 56% to 8-10% in subgroups in which only one trait among OGIS, GS, and CLIm was relatively stable (odds ratios 0.07-0.09). T2D polygenic risk score and baseline pancreatic fat, glucagon-like peptide 1, glucagon, diet, and physical activity did not show an independent role. CONCLUSIONS: Deteriorating insulin sensitivity and ß-cell function, increasing insulin clearance, high visceral or liver fat, and worsening of the lipid profile are the crucial factors mediating glycemic deterioration of patients with T2D in the initial phase of the disease. Stabilization of a single trait among insulin sensitivity, ß-cell function, and insulin clearance may be relevant to prevent progression.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Insulin-Secreting Cells , Blood Glucose , Cholesterol, HDL , Humans , Insulin
15.
Genome Med ; 12(1): 109, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33261667

ABSTRACT

BACKGROUND: The rising prevalence of type 2 diabetes (T2D) poses a major global challenge. It remains unresolved to what extent transcriptomic signatures of metabolic dysregulation and T2D can be observed in easily accessible tissues such as blood. Additionally, large-scale human studies are required to further our understanding of the putative inflammatory component of insulin resistance and T2D. Here we used transcriptomics data from individuals with (n = 789) and without (n = 2127) T2D from the IMI-DIRECT cohorts to describe the co-expression structure of whole blood that mainly reflects processes and cell types of the immune system, and how it relates to metabolically relevant clinical traits and T2D. METHODS: Clusters of co-expressed genes were identified in the non-diabetic IMI-DIRECT cohort and evaluated with regard to stability, as well as preservation and rewiring in the cohort of individuals with T2D. We performed functional and immune cell signature enrichment analyses, and a genome-wide association study to describe the genetic regulation of the modules. Phenotypic and trans-omics associations of the transcriptomic modules were investigated across both IMI-DIRECT cohorts. RESULTS: We identified 55 whole blood co-expression modules, some of which clustered in larger super-modules. We identified a large number of associations between these transcriptomic modules and measures of insulin action and glucose tolerance. Some of the metabolically linked modules reflect neutrophil-lymphocyte ratio in blood while others are independent of white blood cell estimates, including a module of genes encoding neutrophil granule proteins with antibacterial properties for which the strongest associations with clinical traits and T2D status were observed. Through the integration of genetic and multi-omics data, we provide a holistic view of the regulation and molecular context of whole blood transcriptomic modules. We furthermore identified an overlap between genetic signals for T2D and co-expression modules involved in type II interferon signaling. CONCLUSIONS: Our results offer a large-scale map of whole blood transcriptomic modules in the context of metabolic disease and point to novel biological candidates for future studies related to T2D.


Subject(s)
Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Phenotype , Transcriptome , Cohort Studies , Gene Expression Regulation , Genome-Wide Association Study , Humans , Insulin , Insulin Resistance , Leukocytes
16.
Nat Commun ; 11(1): 5881, 2020 11 18.
Article in English | MEDLINE | ID: mdl-33208748

ABSTRACT

Microbiota-host-diet interactions contribute to the development of metabolic diseases. Imidazole propionate is a novel microbially produced metabolite from histidine, which impairs glucose metabolism. Here, we show that subjects with prediabetes and diabetes in the MetaCardis cohort from three European countries have elevated serum imidazole propionate levels. Furthermore, imidazole propionate levels were increased in subjects with low bacterial gene richness and Bacteroides 2 enterotype, which have previously been associated with obesity. The Bacteroides 2 enterotype was also associated with increased abundance of the genes involved in imidazole propionate biosynthesis from dietary histidine. Since patients and controls did not differ in their histidine dietary intake, the elevated levels of imidazole propionate in type 2 diabetes likely reflects altered microbial metabolism of histidine, rather than histidine intake per se. Thus the microbiota may contribute to type 2 diabetes by generating imidazole propionate that can modulate host inflammation and metabolism.


Subject(s)
Diabetes Mellitus, Type 2/microbiology , Gastrointestinal Microbiome , Imidazoles/blood , Adult , Aged , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/metabolism , Cohort Studies , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/metabolism , Female , Histidine/metabolism , Humans , Male , Middle Aged
17.
PLoS One ; 15(11): e0242360, 2020.
Article in English | MEDLINE | ID: mdl-33253307

ABSTRACT

AIM: Subclasses of different glycaemic disturbances could explain the variation in characteristics of individuals with type 2 diabetes (T2D). We aimed to examine the association between subgroups based on their glucose curves during a five-point mixed-meal tolerance test (MMT) and metabolic traits at baseline and glycaemic deterioration in individuals with T2D. METHODS: The study included 787 individuals with newly diagnosed T2D from the Diabetes Research on Patient Stratification (IMI-DIRECT) Study. Latent class trajectory analysis (LCTA) was used to identify distinct glucose curve subgroups during a five-point MMT. Using general linear models, these subgroups were associated with metabolic traits at baseline and after 18 months of follow up, adjusted for potential confounders. RESULTS: At baseline, we identified three glucose curve subgroups, labelled in order of increasing glucose peak levels as subgroup 1-3. Individuals in subgroup 2 and 3 were more likely to have higher levels of HbA1c, triglycerides and BMI at baseline, compared to those in subgroup 1. At 18 months (n = 651), the beta coefficients (95% CI) for change in HbA1c (mmol/mol) increased across subgroups with 0.37 (-0.18-1.92) for subgroup 2 and 1.88 (-0.08-3.85) for subgroup 3, relative to subgroup 1. The same trend was observed for change in levels of triglycerides and fasting glucose. CONCLUSIONS: Different glycaemic profiles with different metabolic traits and different degrees of subsequent glycaemic deterioration can be identified using data from a frequently sampled mixed-meal tolerance test in individuals with T2D. Subgroups with the highest peaks had greater metabolic risk.


Subject(s)
Blood Glucose/metabolism , Diabetes Mellitus, Type 2/metabolism , Aged , Blood Glucose/analysis , Diabetes Mellitus, Type 2/blood , Fasting/blood , Fasting/metabolism , Female , Follow-Up Studies , Glycated Hemoglobin/analysis , Glycated Hemoglobin/metabolism , Humans , Male , Middle Aged , Triglycerides/blood , Triglycerides/metabolism
18.
Diabetologia ; 63(12): 2713-2724, 2020 12.
Article in English | MEDLINE | ID: mdl-32886190

ABSTRACT

AIMS/HYPOTHESIS: Abnormal gut microbiota and blood metabolome profiles have been reported both in children and adults with uncomplicated type 1 diabetes as well as in adults with type 1 diabetes and advanced stages of diabetic nephropathy. In this study we aimed to investigate the gut microbiota and a panel of targeted plasma metabolites in individuals with type 1 diabetes of long duration without and with different levels of albuminuria. METHODS: In a cross-sectional study we included 161 individuals with type 1 diabetes and 50 healthy control individuals. Individuals with type 1 diabetes were categorised into three groups according to historically measured albuminuria: (1) normoalbuminuria (<3.39 mg/mmol); (2) microalbuminuria (3.39-33.79 mg/mmol); and (3) macroalbuminuria (≥33.90 mg/mmol). From faecal samples, the gut microbiota composition at genus level was characterised by 16S rRNA gene amplicon sequencing and in plasma a targeted profile of 31 metabolites was analysed with ultra HPLC coupled to MS/MS. RESULTS: Study participants were aged 60 ± 11 years (mean ± SD) and 42% were women. The individuals with type 1 diabetes had had diabetes for a mean of 42 ± 15 years and had an eGFR of 75 ± 25 ml min-1 (1.73 m)-2. Measures of the gut microbial beta diversity differed significantly between healthy controls and individuals with type 1 diabetes, either with micro- or macroalbuminuria. Taxonomic analyses showed that 79 of 324 genera differed in relative abundance between individuals with type 1 diabetes and healthy controls and ten genera differed significantly among the three albuminuria groups with type 1 diabetes. For the measured plasma metabolites, 11 of 31 metabolites differed significantly between individuals with type 1 diabetes and healthy controls. When individuals with type 1 diabetes were stratified by the level of albuminuria, individuals with macroalbuminuria had higher plasma concentrations of indoxyl sulphate and L-citrulline than those with normo- or microalbuminuria and higher plasma levels of homocitrulline and L-kynurenine compared with individuals with normoalbuminuria. Whereas plasma concentrations of tryptophan were lower in individuals with macroalbuminuria compared with those with normoalbuminuria. CONCLUSIONS/INTERPRETATION: We demonstrate that individuals with type 1 diabetes of long duration are characterised by aberrant profiles of gut microbiota and plasma metabolites. Moreover, individuals with type 1 diabetes with initial stages of diabetic nephropathy show different gut microbiota and plasma metabolite profiles depending on the level of albuminuria. Graphical abstract.


Subject(s)
Albuminuria/blood , Diabetes Mellitus, Type 1/blood , Aged , Albuminuria/microbiology , Cross-Sectional Studies , Diabetes Mellitus, Type 1/microbiology , Female , Gastrointestinal Microbiome/physiology , Humans , Male , Middle Aged , RNA, Ribosomal, 16S/metabolism
19.
PLoS One ; 15(9): e0238648, 2020.
Article in English | MEDLINE | ID: mdl-32947608

ABSTRACT

Elevated postprandial plasma glucose is a risk factor for development of type 2 diabetes and cardiovascular disease. We hypothesized that the inter-individual postprandial plasma glucose response varies partly depending on the intestinal microbiome composition and function. We analyzed data from Danish adults (n = 106), who were self-reported healthy and attended the baseline visit of two previously reported randomized controlled cross-over trials within the Gut, Grain and Greens project. Plasma glucose concentrations at five time points were measured before and during three hours after a standardized breakfast. Based on these data, we devised machine learning algorithms integrating bio-clinical, as well as shotgun-sequencing-derived taxa and functional potentials of the intestinal microbiome to predict individual postprandial glucose excursions. In this post hoc study, we found microbial and clinical features, which predicted up to 48% of the inter-individual variance of postprandial plasma glucose responses (Pearson correlation coefficient of measured vs. predicted values, R = 0.69, 95% CI: 0.45 to 0.84, p<0.001). The features were age, fasting serum triglycerides, systolic blood pressure, BMI, fasting total serum cholesterol, abundance of Bifidobacterium genus, richness of metagenomics species and abundance of a metagenomic species annotated to Clostridiales at order level. A model based only on microbial features predicted up to 14% of the variance in postprandial plasma glucose excursions (R = 0.37, 95% CI: 0.02 to 0.64, p = 0.04). Adding fasting glycaemic measures to the model including microbial and bio-clinical features increased the predictive power to R = 0.78 (95% CI: 0.59 to 0.89, p<0.001), explaining more than 60% of the inter-individual variance of postprandial plasma glucose concentrations. The outcome of the study points to a potential role of the taxa and functional potentials of the intestinal microbiome. If validated in larger studies our findings may be included in future algorithms attempting to develop personalized nutrition, especially for prediction of individual blood glucose excursions in dys-glycaemic individuals.


Subject(s)
Blood Glucose/metabolism , Gastrointestinal Microbiome , Postprandial Period , Algorithms , Fasting/blood , Female , Humans , Life Style , Male , Middle Aged , Models, Biological , Phenomics
20.
EBioMedicine ; 58: 102932, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32763829

ABSTRACT

BACKGROUND: Dietary advice remains the cornerstone of prevention and management of type 2 diabetes (T2D). However, understanding the efficacy of dietary interventions is confounded by the challenges inherent in assessing free living diet. Here we profiled dietary metabolites to investigate glycaemic deterioration and cardiometabolic risk in people at risk of or living with T2D. METHODS: We analysed data from plasma collected at baseline and 18-month follow-up in individuals from the Innovative Medicines Initiative (IMI) Diabetes Research on Patient Stratification (DIRECT) cohort 1 n = 403 individuals with normal or impaired glucose regulation (prediabetic) and cohort 2 n = 458 individuals with new onset of T2D. A dietary metabolite profile model (Tpred) was constructed using multivariable regression of 113 plasma metabolites obtained from targeted metabolomics assays. The continuous Tpred score was used to explore the relationships between diet, glycaemic deterioration and cardio-metabolic risk via multiple linear regression models. FINDINGS: A higher Tpred score was associated with healthier diets high in wholegrain (ß=3.36 g, 95% CI 0.31, 6.40 and ß=2.82 g, 95% CI 0.06, 5.57) and lower energy intake (ß=-75.53 kcal, 95% CI -144.71, -2.35 and ß=-122.51 kcal, 95% CI -186.56, -38.46), and saturated fat (ß=-0.92 g, 95% CI -1.56, -0.28 and ß=-0.98 g, 95% CI -1.53, -0.42 g), respectively for cohort 1 and 2. In both cohorts a higher Tpred score was also associated with lower total body adiposity and favourable lipid profiles HDL-cholesterol (ß=0.07 mmol/L, 95% CI 0.03, 0.1), (ß=0.08 mmol/L, 95% CI 0.04, 0.1), and triglycerides (ß=-0.1 mmol/L, 95% CI -0.2, -0.03), (ß=-0.2 mmol/L, 95% CI -0.3, -0.09), respectively for cohort 1 and 2. In cohort 2, the Tpred score was negatively associated with liver fat (ß=-0.74%, 95% CI -0.67, -0.81), and lower fasting concentrations of HbA1c (ß=-0.9 mmol/mol, 95% CI -1.5, -0.1), glucose (ß=-0.2 mmol/L, 95% CI -0.4, -0.05) and insulin (ß=-11.0 pmol/mol, 95% CI -19.5, -2.6). Longitudinal analysis showed at 18-month follow up a higher Tpred score was also associated lower total body adiposity in both cohorts and lower fasting glucose (ß=-0.2 mmol/L, 95% CI -0.3, -0.01) and insulin (ß=-9.2 pmol/mol, 95% CI -17.9, -0.4) concentrations in cohort 2. INTERPRETATION: Plasma dietary metabolite profiling provides objective measures of diet intake, showing a relationship to glycaemic deterioration and cardiometabolic health. FUNDING: This work was supported by the Innovative Medicines Initiative Joint Undertaking under grant agreement no. 115,317 (DIRECT), resources of which are composed of financial contribution from the European Union's Seventh Framework Programme (FP7/2007-2013) and EFPIA companies.


Subject(s)
Diabetes Mellitus, Type 2/diet therapy , Metabolomics/methods , Prediabetic State/diet therapy , Aged , Case-Control Studies , Cholesterol, HDL/blood , Diabetes Mellitus, Type 2/blood , Diet, Healthy , Energy Intake , Female , Humans , Male , Middle Aged , Prediabetic State/blood , Triglycerides/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...