Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Nat Commun ; 12(1): 4439, 2021 07 21.
Article in English | MEDLINE | ID: mdl-34290235

ABSTRACT

The α- and ß-globin loci harbor developmentally expressed genes, which are silenced throughout post-natal life. Reactivation of these genes may offer therapeutic approaches for the hemoglobinopathies, the most common single gene disorders. Here, we address mechanisms regulating the embryonically expressed α-like globin, termed ζ-globin. We show that in embryonic erythroid cells, the ζ-gene lies within a ~65 kb sub-TAD (topologically associating domain) of open, acetylated chromatin and interacts with the α-globin super-enhancer. By contrast, in adult erythroid cells, the ζ-gene is packaged within a small (~10 kb) sub-domain of hypoacetylated, facultative heterochromatin within the acetylated sub-TAD and that it no longer interacts with its enhancers. The ζ-gene can be partially re-activated by acetylation and inhibition of histone de-acetylases. In addition to suggesting therapies for severe α-thalassemia, these findings illustrate the general principles by which reactivation of developmental genes may rescue abnormalities arising from mutations in their adult paralogues.


Subject(s)
Gene Expression Regulation, Developmental , Gene Silencing , Transcriptional Activation , zeta-Globins/genetics , Acetylation , Animals , Chromatin/metabolism , DNA-Binding Proteins/metabolism , Enhancer Elements, Genetic , Erythroid Cells/metabolism , Gene Expression Regulation, Developmental/drug effects , Gene Silencing/drug effects , Histone Deacetylase Inhibitors/pharmacology , Humans , Mice , Repressor Proteins/metabolism , Transcription Factors/metabolism , Transcriptional Activation/drug effects , alpha-Globins/genetics
2.
Nature ; 595(7865): 125-129, 2021 07.
Article in English | MEDLINE | ID: mdl-34108683

ABSTRACT

In higher eukaryotes, many genes are regulated by enhancers that are 104-106 base pairs (bp) away from the promoter. Enhancers contain transcription-factor-binding sites (which are typically around 7-22 bp), and physical contact between the promoters and enhancers is thought to be required to modulate gene expression. Although chromatin architecture has been mapped extensively at resolutions of 1 kilobase and above; it has not been possible to define physical contacts at the scale of the proteins that determine gene expression. Here we define these interactions in detail using a chromosome conformation capture method (Micro-Capture-C) that enables the physical contacts between different classes of regulatory elements to be determined at base-pair resolution. We find that highly punctate contacts occur between enhancers, promoters and CCCTC-binding factor (CTCF) sites and we show that transcription factors have an important role in the maintenance of the contacts between enhancers and promoters. Our data show that interactions between CTCF sites are increased when active promoters and enhancers are located within the intervening chromatin. This supports a model in which chromatin loop extrusion1 is dependent on cohesin loading at active promoters and enhancers, which explains the formation of tissue-specific chromatin domains without changes in CTCF binding.


Subject(s)
Base Pairing/genetics , Genome/genetics , Animals , Binding Sites , CCCTC-Binding Factor/metabolism , Cell Cycle Proteins/metabolism , Cells, Cultured , Chromatin/chemistry , Chromatin/genetics , Chromatin/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Enhancer Elements, Genetic/genetics , Erythroid Cells/cytology , Erythroid Cells/metabolism , Gene Expression Regulation , Mice , Mice, Inbred C57BL , Organ Specificity , Promoter Regions, Genetic/genetics , alpha-Globins/genetics , Cohesins
3.
Nat Commun ; 10(1): 5412, 2019 11 27.
Article in English | MEDLINE | ID: mdl-31776347

ABSTRACT

Specific communication between gene promoters and enhancers is critical for accurate regulation of gene expression. However, it remains unclear how specific interactions between multiple regulatory elements contained within a single chromatin domain are coordinated. Recent technological advances which can detect multi-way chromatin interactions at single alleles can provide insights into how multiple regulatory elements cooperate or compete for transcriptional activation. Here, we use such an approach to investigate how interactions of the α-globin enhancers are distributed between multiple promoters in a mouse model in which the α-globin domain is extended to include several additional genes. Our data show that gene promoters do not form mutually exclusive interactions with enhancers, but all interact simultaneously in a single complex. These findings suggest that promoters do not structurally compete for interactions with enhancers, but form a regulatory hub structure, which is consistent with recent models of transcriptional activation occurring in non-membrane bound nuclear compartments.


Subject(s)
Chromatin/genetics , Promoter Regions, Genetic , alpha-Globins/genetics , Animals , Binding Sites , Chromatin/metabolism , Enhancer Elements, Genetic , Female , Genetic Loci , Membrane Proteins/genetics , Mice, Inbred C57BL , Mice, Mutant Strains , Models, Genetic
4.
Nat Genet ; 50(12): 1744-1751, 2018 12.
Article in English | MEDLINE | ID: mdl-30374068

ABSTRACT

The promoters of mammalian genes are commonly regulated by multiple distal enhancers, which physically interact within discrete chromatin domains. How such domains form and how the regulatory elements within them interact in single cells is not understood. To address this we developed Tri-C, a new chromosome conformation capture (3C) approach, to characterize concurrent chromatin interactions at individual alleles. Analysis by Tri-C identifies heterogeneous patterns of single-allele interactions between CTCF boundary elements, indicating that the formation of chromatin domains likely results from a dynamic process. Within these domains, we observe specific higher-order structures that involve simultaneous interactions between multiple enhancers and promoters. Such regulatory hubs provide a structural basis for understanding how multiple cis-regulatory elements act together to establish robust regulation of gene expression.


Subject(s)
Alleles , Chromatin , Genetic Loci , Regulatory Sequences, Nucleic Acid , Animals , Base Sequence , Binding Sites/genetics , Cells, Cultured , Chromatin/chemistry , Chromatin/genetics , Chromatin/metabolism , Enhancer Elements, Genetic , Female , Gene Expression Regulation, Developmental , Globins/genetics , Linkage Disequilibrium , Mice , Mice, Inbred C57BL , Promoter Regions, Genetic , Transcription Factors/metabolism
5.
Lancet ; 391(10140): 2605-2606, 2018 06 30.
Article in English | MEDLINE | ID: mdl-30070220
6.
Hum Mol Genet ; 26(R2): R208-R215, 2017 10 01.
Article in English | MEDLINE | ID: mdl-28977451

ABSTRACT

It has been known for over a century that chromatin is not randomly distributed within the nucleus. However, the question of how DNA is folded and the influence of such folding on nuclear processes remain topics of intensive current research. A longstanding, unanswered question is whether nuclear organization is simply a reflection of nuclear processes such as transcription and replication, or whether chromatin is folded by independent mechanisms and this per se encodes function? Evidence is emerging that both may be true. Here, using the α-globin gene cluster as an illustrative model, we provide an overview of the most recent insights into the layers of genome organization across different scales and how this relates to gene activity.


Subject(s)
Genome Components/genetics , Genome/genetics , Genome/physiology , Animals , Cell Nucleus/genetics , Cell Nucleus/physiology , Chromatin/genetics , Chromatin/physiology , DNA/genetics , DNA Replication/genetics , Humans , Multigene Family/genetics , Nucleic Acid Conformation , Transcription, Genetic/genetics , Transcription, Genetic/physiology , alpha-Globins/genetics
7.
Nat Cell Biol ; 19(8): 952-961, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28737770

ABSTRACT

The genome is organized via CTCF-cohesin-binding sites, which partition chromosomes into 1-5 megabase (Mb) topologically associated domains (TADs), and further into smaller sub-domains (sub-TADs). Here we examined in vivo an ∼80 kb sub-TAD, containing the mouse α-globin gene cluster, lying within a ∼1 Mb TAD. We find that the sub-TAD is flanked by predominantly convergent CTCF-cohesin sites that are ubiquitously bound by CTCF but only interact during erythropoiesis, defining a self-interacting erythroid compartment. Whereas the α-globin regulatory elements normally act solely on promoters downstream of the enhancers, removal of a conserved upstream CTCF-cohesin boundary extends the sub-TAD to adjacent upstream CTCF-cohesin-binding sites. The α-globin enhancers now interact with the flanking chromatin, upregulating expression of genes within this extended sub-TAD. Rather than acting solely as a barrier to chromatin modification, CTCF-cohesin boundaries in this sub-TAD delimit the region of chromatin to which enhancers have access and within which they interact with receptive promoters.


Subject(s)
Cell Cycle Proteins/metabolism , Chromatin Assembly and Disassembly , Chromatin/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Embryonic Stem Cells/metabolism , Erythroid Cells/metabolism , Hematopoietic Stem Cells/metabolism , Repressor Proteins/metabolism , alpha-Globins/metabolism , Animals , Binding Sites , Blood Group Antigens/metabolism , CCCTC-Binding Factor , Cell Line , Enhancer Elements, Genetic , Female , Gene Expression Regulation, Developmental , Genotype , Male , Mice, Inbred C57BL , Multigene Family , Mutation , Phenotype , Promoter Regions, Genetic , Protein Binding , Transfection , alpha-Globins/genetics , Cohesins
8.
PLoS One ; 12(1): e0169887, 2017.
Article in English | MEDLINE | ID: mdl-28081254

ABSTRACT

Genome manipulation in the mouse via microinjection of CRISPR/Cas9 site-specific nucleases has allowed the production time for genetically modified mouse models to be significantly reduced. Successful genome manipulation in the mouse has already been reported using Cas9 supplied by microinjection of a DNA construct, in vitro transcribed mRNA and recombinant protein. Recently the use of transgenic strains of mice overexpressing Cas9 has been shown to facilitate site-specific mutagenesis via maternal supply to zygotes and this route may provide an alternative to exogenous supply. We have investigated the feasibility of supplying Cas9 genetically in more detail and for this purpose we report the generation of a transgenic mice which overexpress Cas9 ubiquitously, via a CAG-Cas9 transgene targeted to the Gt(ROSA26)Sor locus. We show that zygotes prepared from female mice harbouring this transgene are sufficiently loaded with maternally contributed Cas9 for efficient production of embryos and mice harbouring indel, genomic deletion and knock-in alleles by microinjection of guide RNAs and templates alone. We compare the mutagenesis rates and efficacy of mutagenesis using this genetic supply with exogenous Cas9 supply by either mRNA or protein microinjection. In general, we report increased generation rates of knock-in alleles and show that the levels of mutagenesis at certain genome target sites are significantly higher and more consistent when Cas9 is supplied genetically relative to exogenous supply.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats , Maternal-Fetal Exchange , Models, Biological , Mutagenesis , Mutation , Transgenes , Zygote/metabolism , Animals , Female , Mice , Mice, Transgenic , Pregnancy
9.
Nat Genet ; 48(8): 895-903, 2016 08.
Article in English | MEDLINE | ID: mdl-27376235

ABSTRACT

Many genes determining cell identity are regulated by clusters of Mediator-bound enhancer elements collectively referred to as super-enhancers. These super-enhancers have been proposed to manifest higher-order properties important in development and disease. Here we report a comprehensive functional dissection of one of the strongest putative super-enhancers in erythroid cells. By generating a series of mouse models, deleting each of the five regulatory elements of the α-globin super-enhancer individually and in informative combinations, we demonstrate that each constituent enhancer seems to act independently and in an additive fashion with respect to hematological phenotype, gene expression, chromatin structure and chromosome conformation, without clear evidence of synergistic or higher-order effects. Our study highlights the importance of functional genetic analyses for the identification of new concepts in transcriptional regulation.


Subject(s)
Enhancer Elements, Genetic/genetics , Erythroid Cells/metabolism , Gene Expression Regulation , Transcription Factors/metabolism , Transcription, Genetic/genetics , alpha-Globins/genetics , Animals , Chromatin/genetics , Embryo, Mammalian/cytology , Embryo, Mammalian/metabolism , Mice , Mice, Knockout
10.
Cell ; 157(6): 1445-1459, 2014 Jun 05.
Article in English | MEDLINE | ID: mdl-24856970

ABSTRACT

Chromatin modifying activities inherent to polycomb repressive complexes PRC1 and PRC2 play an essential role in gene regulation, cellular differentiation, and development. However, the mechanisms by which these complexes recognize their target sites and function together to form repressive chromatin domains remain poorly understood. Recruitment of PRC1 to target sites has been proposed to occur through a hierarchical process, dependent on prior nucleation of PRC2 and placement of H3K27me3. Here, using a de novo targeting assay in mouse embryonic stem cells we unexpectedly discover that PRC1-dependent H2AK119ub1 leads to recruitment of PRC2 and H3K27me3 to effectively initiate a polycomb domain. This activity is restricted to variant PRC1 complexes, and genetic ablation experiments reveal that targeting of the variant PCGF1/PRC1 complex by KDM2B to CpG islands is required for normal polycomb domain formation and mouse development. These observations provide a surprising PRC1-dependent logic for PRC2 occupancy at target sites in vivo.


Subject(s)
Embryonic Stem Cells/metabolism , F-Box Proteins/metabolism , Histones/metabolism , Jumonji Domain-Containing Histone Demethylases/metabolism , Polycomb Repressive Complex 1/metabolism , Polycomb Repressive Complex 2/metabolism , Animals , Bone Development , CpG Islands , F-Box Proteins/chemistry , F-Box Proteins/genetics , Genes, Lethal , Genome-Wide Association Study , Jumonji Domain-Containing Histone Demethylases/chemistry , Jumonji Domain-Containing Histone Demethylases/genetics , Mice , Protein Structure, Tertiary
11.
Genome Res ; 24(3): 401-10, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24336765

ABSTRACT

During embryonic development, maintenance of cell identity and lineage commitment requires the Polycomb-group PRC2 complex, which catalyzes histone H3 lysine 27 trimethylation (H3K27me3). However, the developmental origins of this regulation are unknown. Here we show that H3K27me3 enrichment increases from blastula stages onward in embryos of the Western clawed frog (Xenopus tropicalis) within constrained domains strictly defined by sequence. Strikingly, although PRC2 also binds widely to active enhancers, H3K27me3 is only deposited at a small subset of these sites. Using a Support Vector Machine algorithm, these sequences can be predicted accurately on the basis of DNA sequence alone, with a sequence signature conserved between humans, frogs, and fish. These regions correspond to the subset of blastula-stage DNA methylation-free domains that are depleted for activating promoter motifs, and enriched for motifs of developmental factors. These results imply a genetic-default model in which a preexisting absence of DNA methylation is the major determinant of H3K27 methylation when not opposed by transcriptional activation. The sequence and motif signatures reveal the hierarchical and genetically inheritable features of epigenetic cross-talk that impose constraints on Polycomb regulation and guide H3K27 methylation during the exit of pluripotency.


Subject(s)
Blastula/metabolism , Cell Nucleus/genetics , Gastrula/metabolism , Histones/metabolism , Polycomb Repressive Complex 2/physiology , Xenopus Proteins/genetics , Xenopus/embryology , Animals , Base Sequence , Conserved Sequence , DNA Methylation , Epigenesis, Genetic , Gene Expression Regulation, Developmental , Protein Processing, Post-Translational , Support Vector Machine , Xenopus/genetics , Xenopus/metabolism
12.
Cell Stress Chaperones ; 17(5): 603-13, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22477622

ABSTRACT

Post-heat shock refolding of luciferase requires chaperones. Expression of a dominant negative HSF1 mutant (dnHSF1), which among other effects depletes cells of HSF1-regulated chaperones, blocked post-heat shock refolding of luciferase targeted to the cytoplasm, nucleus, or peroxisomes, while refolding of endoplasmic reticulum (ER)-targeted luciferase was inhibited by about 50 %. Luciferase refolding in the cytoplasm could be partially restored by expression of HSPA1A and fully by both HSPA1A and DNAJB1. For full refolding of ER luciferase, HSPA1A expression sufficed. Neither nuclear nor peroxisomal refolding was rescued by HSPA1A. A stimulatory effect of DNAJB1 on post-heat shock peroxisomal luciferase refolding was seen in control cells, while refolding in the cytoplasm or nucleus in control cells was inhibited by DNAJB1 expression in the absence of added HSPA1A. HSPB1 also improved refolding of peroxisomal luciferase in control cells, but not in dnHSF1 expressing cells. HSP90, HSPA5, HSPA6, and phosphomevalonate kinase (of which the synthesis is also downregulated by dnHSF1) had no effect on peroxisomal refolding in either control or chaperone-depleted cells. The chaperone requirement for post-heat shock refolding of peroxisomal luciferase in control cells is thus unusual in that it can be augmented by DNAJB1 or HSPB1 but not by HSPA1A; in dnHSF1 expressing cells, expression of none of the (co)-chaperones tested was effective, and an as yet to be identified, HSF1-regulated function is required.


Subject(s)
DNA-Binding Proteins/metabolism , Peroxisomes/metabolism , Transcription Factors/metabolism , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Chaperone BiP , Genes, Reporter , HEK293 Cells , HSP40 Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/metabolism , Heat Shock Transcription Factors , Heat-Shock Proteins/metabolism , Humans , Luciferases/genetics , Luciferases/metabolism , Phosphotransferases (Phosphate Group Acceptor)/metabolism , Protein Refolding , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...