Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Mater ; 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39026087

ABSTRACT

Iron-based 1111-type superconductors display high critical temperatures and relatively high critical current densities Jc. The typical approach to increasing Jc is to introduce defects to control dissipative vortex motion. However, when optimized, this approach is theoretically predicted to be limited to achieving a maximum Jc of only ∼30% of the depairing current density Jd, which depends on the coherence length and the penetration depth. Here we dramatically boost Jc in SmFeAsO1-xHx films using a thermodynamic approach aimed at increasing Jd and incorporating vortex pinning centres. Specifically, we reduce the penetration depth, coherence length and critical field anisotropy by increasing the carrier density through high electron doping using H substitution. Remarkably, the quadrupled Jd reaches 415 MA cm-2, a value comparable to cuprates. Finally, by introducing defects using proton irradiation, we obtain high Jc values in fields up to 25 T. We apply this method to other iron-based superconductors and achieve a similar enhancement of current densities.

2.
J Am Chem Soc ; 141(13): 5343-5349, 2019 Apr 03.
Article in English | MEDLINE | ID: mdl-30840450

ABSTRACT

A current issue facing light-emitting devices is a missing suitable material for green emission. To overcome this, we explore semiconductors possessing (i) a deep conduction band minimum (CBM) and a shallow valence band maximum (VBM), (ii) good controllability of electronic conductivity and carrier polarity, and (iii) a directly allowed band gap corresponding to green emission. We focus on early transition metal ( eTM)-based perovskites. The eTM cation's high and stable valence state makes its carrier controllability easy, and the eTM's nonbonding d orbital and the anion's p orbital, which constitute the deep CBM and shallow VBM, are favorable to n- and p-type doping, respectively. To obtain a direct band gap, we applied a scheme that folds the bands constituting the VBM at the zone boundary to the zone center where the CBM appears. Orthorhombic SrHfS3 was chosen as the candidate. The electrical conductivity was tuned from 6 × 10-7 to 7 × 10-1 S·cm-1 with lanthanum (La) doping and to 2 × 10-4 S·cm-1 with phosphorus (P) doping. Simultaneously, the major carrier polarity was controlled to n type by La doping and to p type by P doping. Both the undoped and doped SrHfS3 exhibited intense green photoluminescence (PL) at 2.37 eV. From the PL blue shift and short lifetime, we attributed the emission to a band-to-band transition and/or exciton. These results demonstrate that SrHfS3 is a promising green-light-emitting semiconductor.

3.
Sci Rep ; 8(1): 1645, 2018 01 26.
Article in English | MEDLINE | ID: mdl-29374237

ABSTRACT

Authors report an effect of F substitution on layered SnSe2 through the successful synthesis of polycrystalline SnSe2-δF x (0.000 ≤ x ≤ 0.010) by solid-state reaction. Accompanied with density functional theory calculations, the blue shift of A1g peak in Raman spectra reveal that F- ions are substituted at Se vacancy sites as decreasing the reduced mass of vibrational mode associated with Sn-Se bonding. From the measurements of electrical parameters, conductivity as well as carrier concentration are governed by thermally activated behavior, while such behavior is suppressed in Hall mobility, which occurs as F ratio increases. Based on Arrhenius relation, it is found that the potential barrier height at the grain boundary is suppressed with increasing F amount, suggesting that the F- ion is a promising candidate for the grain boundary passivation in the two-dimensional dichalcogenide system.

4.
J Am Chem Soc ; 139(44): 15668-15680, 2017 11 08.
Article in English | MEDLINE | ID: mdl-29023114

ABSTRACT

Inspired by the successful synthesis of alkaline-earth-metals-based electrides [Ca24Al28O64]4+(e-)4 (C12A7:e-) and [Ca2N]+:e- and high-throughput database screening results, we explore the potential for new electrides to emerge in the Sr-P system through a research approach combining ab initio evolutionary structure searches and experimental validation. Through employing an extensive evolutionary structure search and first-principles calculations, we first predict the new structures of a series of strontium phosphides: Sr5P3, Sr8P5, Sr3P2 and Sr4P3. Of these structures, we identify Sr5P3 and Sr8P5 as being potential electrides with quasi-one-dimensional (1D) and zero-dimensional (0D) character, respectively. Following these theoretical results, we present the successful synthesis of the new compound Sr5P3 and the experimental confirmation of its structure. Although density functional calculations with the generalized gradient approximation predict Sr5P3 to be a metal, electrical conductivity measurement reveal semiconducting properties characterized by a distinct band gap, which indicates that the newly synthesized Sr5P3 is an ideal one-dimensional electride with the half-filled band by unpaired electrons. In addition to presenting the novel electride Sr5P3, we discuss the implications of its semiconducting nature for 1D electrides in general and propose a mechanism for the formation of electrides with an orbital level diagram based on first-principles calculations.

5.
Sci Rep ; 6: 35797, 2016 10 21.
Article in English | MEDLINE | ID: mdl-27767066

ABSTRACT

Oxypnictide thin film growth by pulsed laser deposition (PLD) is one of many insufficiently resolved issues in the research of iron-based superconductors. Here we report on the successful realization of superconducting SmO1-xFxFeAs oxypnictide thin film growth by in-situ PLD on CaF2 (fluorite) substrates. CaF2 acts as fluorine supplier by diffusion and thus enables superconducting oxypnictide thin film growth by PLD. Films are grown heteroepitaxially and characteristically have a broad resistive normal-to-superconducting transition. Best films have onset transition temperatures around 40 K. The proposed in-situ PLD film growth offers an alternative and cheap route for the fabrication of iron oxypnictides. PLD becomes now an additional option for iron oxypnictide synthesis.

6.
Proc Natl Acad Sci U S A ; 113(15): 3986-90, 2016 Apr 12.
Article in English | MEDLINE | ID: mdl-27035956

ABSTRACT

It is thought that strong electron correlation in an insulating parent phase would enhance a critical temperature (Tc) of superconductivity in a doped phase via enhancement of the binding energy of a Cooper pair as known in high-Tc cuprates. To induce a superconductor transition in an insulating phase, injection of a high density of carriers is needed (e.g., by impurity doping). An electric double-layer transistor (EDLT) with an ionic liquid gate insulator enables such a field-induced transition to be investigated and is expected to result in a high Tc because it is free from deterioration in structure and carrier transport that are in general caused by conventional carrier doping (e.g., chemical substitution). Here, for insulating epitaxial thin films (∼10 nm thick) of FeSe, we report a high Tc of 35 K, which is 4× higher than that of bulk FeSe, using an EDLT under application of a gate bias of +5.5 V. Hall effect measurements under the gate bias suggest that highly accumulated electron carrier in the channel, whose area density is estimated to be 1.4 × 10(15) cm(-2) (the average volume density of 1.7 × 10(21) cm(-3)), is the origin of the high-Tc superconductivity. This result demonstrates that EDLTs are useful tools to explore the ultimate Tc for insulating parent materials.

SELECTION OF CITATIONS
SEARCH DETAIL