Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Nanomaterials (Basel) ; 13(20)2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37887895

ABSTRACT

In the present study, the structural, mechanical, electronic and optical properties of all-inorganic vacancy-ordered double perovskites A2Sn1-xTixY6 (A = K, Rb, Cs; Y = Cl, Br, I) are explored by density functional theory. The structural and thermodynamic stabilities are confirmed by the tolerance factor and negative formation energy. Moreover, by doping Ti ions into vacancy-ordered double perovskite A2SnY6, the effect of Ti doping on the electronic and optical properties was investigated in detail. Then, according to the requirement of practical applications in photovoltaics, the optimal concentration of Ti ions and the most suitable halide element are determined to screen the right compositions. In addition, the mechanical, electronic and optical properties of the selected compositions are discussed, exhibiting the maximum optical absorption both in the visible and ultraviolet energy ranges; thus, the selected compositions can be considered as promising materials for application in solar photovoltaics. The results suggest a great potential of A2Sn1-xTixY6 (A = K, Rb, Cs; Y = Cl, Br, I) for further theoretical research as well as experimental research on the photovoltaic performance of stable and toxic-free perovskite solar cells.

2.
ACS Appl Mater Interfaces ; 15(26): 31470-31477, 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37346009

ABSTRACT

Multicomponent synergistic regulation and defect design have been effective strategies to enhance the electrocatalytic activity of transition-metal oxides. In this work, NiO and NiMoO4 nanocomposites on multi-walled carbon nanotubes (termed NiO-NiMoO4/mCNTs) are synthesized through a two-step method. Physical characterizations show NiO-NiMoO4/mCNTs have a well-defined NiO-NiMoO4 structure, large specific surface area, and abundant oxygen vacancies. For oxygen evolution reaction (OER), NiO-NiMoO4/mCNTs deliver lower overpotential (277 mV) than NiO/mCNTs, NiO, and commercial RuO2 nanocrystals at 10 mA cm-2. For hydrogen evolution reaction (HER), NiO-NiMoO4/mCNTs still show the best HER activity, manifested by the smallest onset potential and the lowest Tafel. Density functional theory calculations show that the adsorption energies of hydrogen- and oxygen-containing intermediates on the NiO-NiMoO4/mCNTs surface have changed, which can lower the energy barriers required for HER and OER. The excellent electrocatalytic activity of bifunctional NiO-NiMoO4/mCNTs for OER and HER can be attributed to the synergy effect between NiO, NiMoO4, and mCNTs. A symmetrical two-electrode water electrolyzer with NiO-NiMoO4/mCNTs as both the cathode and anode are constructed, which can reach a current density of 10 mA cm-2 and only requires 1.57 V.

3.
Biochem Biophys Res Commun ; 603: 138-143, 2022 05 07.
Article in English | MEDLINE | ID: mdl-35287055

ABSTRACT

Schistosoma japonicum is a parasitic worm that lives in the mesenteric vein of its host and feeds on blood, suggesting that it might be a natural resource of novel anticoagulants. Here, by comprehensive analyses of the genomic sequences of Schistosoma japonicum, a new Kunitz-type gene precursor was identified. The Kunitz-type gene precursor codes for an 18-residue signal peptide and a 60-residue mature peptide. The Kunitz peptide was functionally expressed, and it had apparent inhibitory activity towards the intrinsic coagulation pathway but no effect on the extrinsic coagulation pathway even at the high concentration of 3 µM. Enzyme and inhibitor experiments further showed that the Kunitz domain peptide was a potent and selective FXa inhibitor, so it was named Schixator (Schistosoma FXa inhibitor). Schixator inhibits coagulation factor FXa with a Ki of 2.66 nM, but had weak inhibitory activity towards chymotrypsin, FXIa, plasma kallikrein, and plasmin, and no inhibitory activity towards trypsin, elastase, FIIa or FXIIa. In vivo, the intravenous administration of Schixator into mice dramatically decreased the number of thrombi in the carotid artery in an FeCl3-induced thrombus formation model without producing bleeding complications. To the best of our knowledge, Schixator is the first potent and selective FXa inhibitor from parasitic worms with antithrombotic effects and a low bleeding risk that provides a new clue for lead drug discovery against thrombosis-associated human diseases.


Subject(s)
Schistosoma japonicum , Thrombosis , Animals , Anticoagulants/pharmacology , Blood Coagulation , Factor Xa Inhibitors/pharmacology , Fibrinolytic Agents/pharmacology , Fibrinolytic Agents/therapeutic use , Hemorrhage , Mice , Thrombosis/drug therapy
4.
Phys Chem Chem Phys ; 23(41): 23808-23817, 2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34644716

ABSTRACT

Low-dimensional systems have strong multi-body interactions and fewer geometric constraints due to the screening effect of the Coulomb interaction. We use the single-shot GW-Bethe Salpeter equation (G0W0-BSE) to calculate the electronic and optical properties of six-blue arsenic phosphorus (ß-AsP) conformers. The results show significant anisotropic exciton effects of covering visible regions, which apparently changed the light absorption. The maximum exciton binding energy is up to 0.99 eV, which is more extensive than the black phosphorus monolayer (0.9 eV). We predict that the different orbital contributions to valence bands may cause the anisotropic exciton effect difference. Our results indicate that ß-AsP monolayers with the large binding energies of exciton hold a great promise for applications in optoelectronic devices.

5.
Nanoscale Res Lett ; 16(1): 130, 2021 Aug 13.
Article in English | MEDLINE | ID: mdl-34387780

ABSTRACT

Water electrolysis is a sustainable and clean method to produce hydrogen fuel via hydrogen evolution reaction (HER). Using stable, effective and low-cost electrocatalysts for HER to substitute expensive noble metals is highly desired. In this paper, by using first-principles calculation, we designed a defect and N-, S-, P-doped penta-graphene (PG) as a two-dimensional (2D) electrocatalyst for HER, and its stability, electronic properties and catalytic performance were investigated. The Gibbs free energy (ΔGH), which is the best descriptor for the HER, is calculated and optimized, the calculation results show that the ΔGH can be 0 eV with C2 vacancies and P doping at C1 active sites, which should be the optimal performance for a HER catalyst. Moreover, we reveal that the larger charge transfer from PG to H, the closer ΔGH is to zero according to the calculation of the electron charge density differences and Bader charges analysis. Ulteriorly, we demonstrated that the HER performance prefers the Volmer-Heyrovsky mechanism in this study.

6.
RSC Adv ; 11(61): 38478-38485, 2021 Nov 29.
Article in English | MEDLINE | ID: mdl-35493256

ABSTRACT

Searching for catalysts of hydrogen evolution reaction (HER) that can replace Pt is critical. Here, we investigated the HER electrocatalytic activity of pentagonal PdS2 (penta-PdS2) and PdSe2 (penta-PdSe2) by first-principles calculations. Three types of vacancies (VS/Se, VPd, DVS/Se) were constructed to activate the inert basal planes of PdS2 and PdSe2. The results show that S/Se and Pd vacancies significantly improve HER performance, and the Gibbs free energy (ΔG H) of systems can be further regulated by vacancy concentration. Particularly, PdS2 with 2.78% VS, 50% VPd and PdSe2 with 12.5% VSe display the optimal ΔG H value and the highest exchange current density. Further analysis of charge transfer and band structures were described that the introduce of vacancies efficiently regulates the electronic properties, resulting in the diminution of bandgap, and accelerates the charge transfer, thereby contributing to an enhanced electron environment for HER process. Our results provide a theoretical guidance for the applications of pentagonal transition-metal dichalcogenides as catalysts of hydrogen evolution reaction.

7.
Toxicon ; 184: 167-174, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32565098

ABSTRACT

Only a few work have been done for peptides from non-venom gland tissues of venomous animals. Here, with the help of the whole body transcriptomic and the hemolymph proteomic data of the Chinese scorpion Buthus martensii Karsch, we identified the first Ascaris-type peptide BmHDP from scorpion hemolymph. The precursor of BmHDP has 80 residues, including a 16 residue signal peptide and a 64 residue mature peptide. The mature peptide has 10 conserved cysteines and adopts a conserved Ascaris-type fold. Using combined inclusion body refolding and biochemical identification strategies, recombinant BmHDP was obtained successfully. Protease inhibitory assays showed that BmHDP inhibited chymotrypsin apparently at a concentration of 8 nM. Patch-clamp experiments showed that BmHDP inhibited the Kv1.3 potassium channel apparently at a concentration of 1000 nM. Coagulation experiment assays showed that BmHDP inhibited intrinsic coagulation pathway apparently at a concentration of 500 nM. To the best of our knowledge, BmHDP is the first Ascaris-type peptide from scorpion hemolymph. Our work highlighted a functional link between scorpion non-venom gland peptides and venom gland toxin peptides, and suggested that scorpion hemolymph might be a new source of bioactive peptides.


Subject(s)
Ascaris , Hemolymph/chemistry , Scorpion Venoms/chemistry , Scorpions , Amino Acid Sequence , Animals , Base Sequence , Cloning, Molecular , DNA, Complementary , Gene Library , Peptides , Proteomics
8.
Int J Biol Macromol ; 120(Pt A): 1190-1197, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30172807

ABSTRACT

Although there were a lot of weakly active animal toxins in the venoms, their values and applications are still mysterious, such as BF9, which is a Kunitz-type toxin isolated from the venom of the elapid snake Bungarus fasciatus. Here, we used BF9 to be a molecular scaffold, and engineered eight BF9-derived peptides by changing P1 site Asn17 of BF9, such as BF9-N17Y and BF9-N17T designed from the polar subfamily, BF9-N17L and BF9-N17G designed from the Non-polar subfamily, BF9-N17D designed from acidic subfamily, and BF9-N17H, BF9-N17K and BF9-N17R designed from basic subfamily. Through enzyme inhibitor experiment assays, we found a potent and selective chymotrypsin inhibitor BF9-N17Y, a potent and selective coagulation factor XIa inhibitor BF9-N17H, and two highly potent coagulation factor XIa inhibitors BF9-N17K and BF9-N17. APTT and PT assays further showed that BF9-N17H, BF9-N17K and BF9-N17R were three novel anticoagulants with selectively intrinsic coagulation pathway inhibitory activity. Considering that natural weakly active animal toxins are also a huge peptide resource, our present work might open a new window about pharmacological applications of weakly active animal toxins, which might be good templates for potent and selective molecular probe and lead drug designs.


Subject(s)
Bungarotoxins/chemistry , Peptides/chemistry , Protein Engineering , Serine Proteinase Inhibitors/chemistry , Amino Acid Sequence/genetics , Animals , Blood Coagulation/drug effects , Bungarotoxins/genetics , Bungarus , Factor XIa/antagonists & inhibitors , Factor XIa/chemistry , Humans , Peptides/genetics , Peptides/pharmacology , Prothrombin Time/methods , Serine Proteases/chemistry , Serine Proteases/genetics , Serine Proteinase Inhibitors/genetics , Snake Venoms/chemistry , Snake Venoms/genetics
9.
Toxicon ; 152: 9-15, 2018 Sep 15.
Article in English | MEDLINE | ID: mdl-30012473

ABSTRACT

The Kv1.3 channel plays potential roles in immune, inflammation and coagulation system. Many studies showed that Kv1.3 channel inhibitors have immunosuppressive and anti-inflammatory activities, but no Kv1.3 channel inhibitors have been found to have anticoagulation activities. Here, based on our previous work about Kv1.3 channel toxin peptide inhibitors, we first attempt to test anticoagulation activities of four known venom-derived Kv1.3 channel inhibitors with different structural folds: BmKTX with CSα/ß structural fold, OmTx3 with CSα/α structural fold, BF9 with Kuntz-type structural fold, and SjAPI-2 with Ascaris-type structural fold. Our results showed that BmKTX and OmTx3 have no activities towards both intrinsic and extrinsic coagulation pathway, SjAPI-2 just has weak activity towards intrinsic coagulation pathway, and BF9 has potent activity towards intrinsic coagulation pathway with no apparent effect on extrinsic coagulation pathway. Enzyme and inhibitor reaction kinetics experiments further showed that BF9 inhibited intrinsic coagulation pathway-associated coagulation factor XIa, but have no apparent effects on common coagulation pathway coagulation factor IIa. Structure-activity relationship showed that Gly14, Asn17, Ala18 and Ile20 of BF9 are main residues involved in the inhibiting effect on factor XIa. To the best of our knowledge, BF9 is the first anticoagulant with Kv1.3 channel inhibitory activity. Together, our present studies found the first dual functional peptides with Kv1.3 channel and coagulation factor XIa inhibitory activities, and provided a new molecular template for the lead drug discovery towards immune and thrombosis-associated human diseases.


Subject(s)
Anticoagulants/pharmacology , Bungarotoxins/pharmacology , Factor XIa/antagonists & inhibitors , Kv1.3 Potassium Channel/antagonists & inhibitors , Blood Coagulation/drug effects , Humans , Kinetics , Scorpion Venoms/pharmacology , Structure-Activity Relationship
10.
Peptides ; 91: 13-19, 2017 05.
Article in English | MEDLINE | ID: mdl-28300672

ABSTRACT

Non-Buthidae venomous scorpions are huge natural sources of toxin peptides; however, only a few studies have been done to understand their toxin peptides. Herein, we describe three new potential immunomodulating toxin peptides, Ctri18, Ctry68 and Ctry2908, from two non-Buthidae scorpions, Chaerilus tricostatus and Chaerilus tryznai. Sequence alignment analyses showed that Ctri18, Ctry68 and Ctry2908 are three new members of the scorpion toxin α-KTx15 subfamily. Electrophysiological experiments showed that Ctri18, Ctry68 and Ctry2908 blocked the Kv1.3 channel at micromole to nanomole levels, but had weak effects on potassium channel KCNQ1 and sodium channel Nav1.4, which indicated that Ctri18, Ctry68 and Ctry2908 might have specific inhibiting effects on the Kv1.3 channel. ELISA experiments showed that Ctri18, Ctry68 and Ctry2908 inhibited IL-2 cytokine secretions of activated T lymphocyte in human PBMCs. Excitingly, consistent with the good Kv1.3 channel inhibitory activity, Ctry2908 inhibited cytokine IL-2 secretion in nanomole level, which indicated that Ctry2908 might be a new lead drug template toward Kv1.3 channels. Together, these studies discovered three new toxin peptides, Ctri18, Ctry68 and Ctry2908, with Kv1.3 channel and IL-2 cytokine-inhibiting activities from two scorpions, C. tricostatus and C. tryznai, and highlighted that non-Buthidae venomous scorpions are new natural toxin peptide sources.


Subject(s)
Interleukin-2/antagonists & inhibitors , Kv1.3 Potassium Channel/antagonists & inhibitors , Scorpion Venoms/chemistry , Scorpion Venoms/pharmacology , Scorpions/chemistry , Adult , Amino Acid Sequence , Animals , Cells, Cultured , Cloning, Molecular , Dose-Response Relationship, Drug , Female , Humans , KCNQ1 Potassium Channel/antagonists & inhibitors , Male , Models, Molecular , NAV1.4 Voltage-Gated Sodium Channel/chemistry , Peptides/chemistry , Peptides/genetics , Peptides/isolation & purification , Peptides/pharmacology , Potassium Channel Blockers/isolation & purification , Potassium Channel Blockers/pharmacology , Scorpion Venoms/genetics , Scorpion Venoms/isolation & purification , Scorpions/genetics , T-Lymphocytes/chemistry
11.
CNS Neurol Disord Drug Targets ; 13(4): 661-72, 2014.
Article in English | MEDLINE | ID: mdl-24040792

ABSTRACT

Multidrug resistance mediated by over-expression of P-glycoprotein (P-gp) in brain is an important mechanism accounting for the drug-therapy failure in epilepsy. Over-expression of P-gp in epilepsy rat brain may be regulated by inflammation and nuclear factor-kappa B (NF-κB) activation. Inhibitory κ B kinase subunit ß (IKKß) is an up-stream molecular controlling NF-κB activation. With the small interfering RNA (siRNA) technique and kainic acid (KA)-induced rat epileptic seizure model, the present study was aimed to further evaluate the role of NF-κB inhibition, via blocking IKKß gene transcription, in the epileptic brain P-gp over-expression, seizure susceptibility, and post-seizure brain damage. siRNA targeting IKKß was administered to rats via intracerebroventricular injection before seizure induction by KA microinjection; scrambled siRNA was used as control. Brain mRNA and protein levels of IKKß and P-gp were detected by RT-PCR and immunohistochemistry. NF-κB activity was measured by electrophoretic mobility shift assay. Latency to grade III or V seizure onset was recorded, brain damage was evaluated by neuronal cell counting and epileptiform activity was monitored by electroencephalography. IKKß siRNA pre-treatment inhibited NF-κB activation and abolished P-gp over-expression in KA-induced epileptic rat brain, accompanied by decreased seizure susceptibility. These findings suggested that epileptogenic-induced P-gp over-expression could be regulated by IKKß through the NF-κB pathway.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Brain/metabolism , I-kappa B Kinase/genetics , I-kappa B Kinase/metabolism , RNA Interference , RNA, Small Interfering/metabolism , Seizures/metabolism , Animals , Brain/pathology , Disease Models, Animal , Gene Expression , Kainic Acid , Male , NF-kappa B/metabolism , Neurons/pathology , Neurons/physiology , Rats, Sprague-Dawley , Seizures/pathology , Transcription, Genetic
12.
J Photochem Photobiol B ; 110: 28-33, 2012 May 02.
Article in English | MEDLINE | ID: mdl-22424954

ABSTRACT

The soyabean isoflavones genistein (GEN) and daidzein (DA) are popular presented in diet. Isoflavones have a variety of biological activities including antioxidant and anticancer properties. On account of its antioxidant activity, isoflavones might protect cancer cells from free radical damage in photodynamic (PDT) during which reactive oxygen species (ROS) production was stimulated leading to irreversible tumor cell injury. In this study, the influence of GEN and DA on K562 cells in 5-aminolevulinic acid (ALA)-based PDT was demonstrated. The results showed that GEN inhibited cell proliferation and enhance cell apoptosis, lipid peroxidation, and DNA damage in ALA-PDT on K562 cells. However, DA did not enhance cell apoptosis, lipid peroxidation, and DNA damage in ALA-PDT. In conclusion, the results suggested that soy consumption during PDT did not decrease the effectiveness of cancer therapy on malignant cells.


Subject(s)
Aminolevulinic Acid/therapeutic use , Genistein/pharmacology , Isoflavones/pharmacology , K562 Cells/drug effects , Photochemotherapy , Antioxidants/pharmacology , Apoptosis/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , DNA Damage/drug effects , Diet , Humans , Lipid Peroxidation/drug effects , Photosensitizing Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...