Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
1.
Biosens Bioelectron ; 260: 116426, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38815461

ABSTRACT

The conventional detection model of passive adaptation to pathogen mutations, i.e., developing assays using corresponding antibodies or nucleic acid probes, is difficult to address frequent outbreaks of emerging infectious diseases. In particular, adaptive mutations observed in coronaviruses, which increase the affinity of the spike protein with the human cellular receptor hACE2, play pivotal roles in the transmission and immune evasion of coronaviruses. Herein, we developed a multifunctional optical fiber evanescent wave biosensor for the universal assay of coronavirus and affinity analysis of the spike protein interacting with hACE2, namely, My-SPACE. By competitively binding with Cy5.5-hACE2 between coronavirus spike proteins in mobile buffer and that modified on optical fibers from the SARS-CoV-2 wild type, My-SPACE could automatically detect SARS-CoV-2 and its variants within 10 min. My-SPACE demonstrated greater sensitivity and faster results than ELISA for SARS-CoV-2 variants, achieving 100% specificity and 94.10% sensitivity in detecting the Omicron variant in 18 clinical samples. Moreover, the interaction between hACE2 and the coronavirus spike protein was accurately characterized across SARS-CoV-2 mutants, SARS-CoV and hCoV-NL63. The accuracy of the affinity determined by My-SPACE was verified by SPR. This approach enables preliminary assessment of the transmissibility and hazards of emerging coronaviruses. The sensor fibers of My-SPACE can be reused more than 40 times, and the device is compact and easy to use; moreover, it is available as a rapid and cost-effective on-site detection tool adapted to coronavirus variability and as an effective assessment platform for early warning of coronavirus transmission risk.


Subject(s)
Angiotensin-Converting Enzyme 2 , Biosensing Techniques , COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Biosensing Techniques/methods , SARS-CoV-2/isolation & purification , SARS-CoV-2/genetics , Humans , COVID-19/virology , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Protein Binding
2.
J Mater Chem B ; 12(17): 4097-4117, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38587869

ABSTRACT

Single phototherapy and immunotherapy have individually made great achievements in tumor treatment. However, monotherapy has difficulty in balancing accuracy and efficiency. Combining phototherapy with immunotherapy can realize the growth inhibition of distal metastatic tumors and enable the remote monitoring of tumor treatment. The development of nanomaterials with photo-responsiveness and anti-tumor immunity activation ability is crucial for achieving photo-immunotherapy. As immune adjuvants, photosensitizers and photothermal agents, manganese-based nanoparticles (Mn-based NPs) have become a research hotspot owing to their multiple ways of anti-tumor immunity regulation, photothermal conversion and multimodal imaging. However, systematic studies on the synergistic photo-immunotherapy applications of Mn-based NPs are still limited; especially, the green synthesis and mechanism of Mn-based NPs applied in immunotherapy are rarely comprehensively discussed. In this review, the synthesis strategies and function of Mn-based NPs in immunotherapy are first introduced. Next, the different mechanisms and leading applications of Mn-based NPs in immunotherapy are reviewed. In addition, the advantages of Mn-based NPs in synergistic photo-immunotherapy are highlighted. Finally, the challenges and research focus of Mn-based NPs in combination therapy are discussed, which might provide guidance for future personalized cancer therapy.


Subject(s)
Immunotherapy , Manganese , Humans , Manganese/chemistry , Manganese/pharmacology , Immunotherapy/methods , Phototherapy/methods , Green Chemistry Technology , Neoplasms/therapy , Neoplasms/drug therapy , Animals , Nanostructures/chemistry , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Particle Size
3.
Sci Total Environ ; 927: 172037, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38575003

ABSTRACT

Despite increasing concerns regarding the harmful effects of plastic-induced gut injury, mechanisms underlying the initiation of plastic-derived intestinal toxicity remain unelucidated. Here, mice were subjected to long-term exposure to polystyrene nanoplastics (PS-NPs) of varying sizes (80, 200, and 1000 nm) at doses relevant to human dietary exposure. PS-NPs exposure did not induce a significant inflammatory response, histopathological damage, or intestinal epithelial dysfunction in mice at a dosage of 0.5 mg/kg/day for 28 days. However, PS-NPs were detected in the mouse intestine, coupled with observed microstructural changes in enterocytes, including mild villous lodging, mitochondrial membrane rupture, and endoplasmic reticulum (ER) dysfunction, suggesting that intestinal-accumulating PS-NPs resulted in the onset of intestinal epithelial injury in mice. Mechanistically, intragastric PS-NPs induced gut microbiota dysbiosis and specific bacteria alterations, accompanied by abnormal metabolic fingerprinting in the plasma. Furthermore, integrated data from mass spectrometry imaging-based spatial metabolomics and metallomics revealed that PS-NPs exposure led to gut dysbiosis-associated host metabolic reprogramming and initiated intestinal injury. These findings provide novel insights into the critical gut microbial-host metabolic remodeling events vital to nanoplastic-derived-initiated intestinal injury.


Subject(s)
Gastrointestinal Microbiome , Intestinal Mucosa , Polystyrenes , Animals , Polystyrenes/toxicity , Mice , Intestinal Mucosa/metabolism , Gastrointestinal Microbiome/drug effects , Nanoparticles/toxicity , Dysbiosis/chemically induced , Microplastics/toxicity
4.
Microbiol Spectr ; 11(6): e0232023, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-37889044

ABSTRACT

IMPORTANCE: This study combines quantitative polymerase chain reaction (qPCR) and microfluidics to introduce MONITOR, a portable field detection system for multiple pathogens causing influenza-like illness. MONITOR can be rapidly deployed to enable simultaneous sample-in-result-out detection of eight common influenza-like illness (ILI) pathogens with heightened sensitivity and specificity. It is particularly well suited for communities and regions without centralized laboratories, offering robust technical support for the prompt and accurate monitoring and detection of ILI. It holds the potential to be a potent tool in the early detection and prevention of infectious diseases.


Subject(s)
Influenza, Human , Virus Diseases , Humans , Real-Time Polymerase Chain Reaction , Influenza, Human/diagnosis , Microfluidics , Sensitivity and Specificity
5.
Pathogens ; 12(2)2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36839599

ABSTRACT

Streptococcus pneumoniae (S. pneumoniae) is a prominent pathogen of bacterial pneumonia and its rapid and sensitive detection in complex biological samples remains a challenge. Here, we developed a simple but effective immunochromatographic assay (ICA) based on silica-Au core-satellite (SiO2@20Au) SERS tags to sensitively and quantitatively detect S. pneumoniae. The high-performance SiO2@20Au tags with superior stability and SERS activity were prepared by one-step electrostatic adsorption of dense 20 nm AuNPs onto 180 nm SiO2 core and introduced into the ICA method to ensure the high sensitivity and accuracy of the assay. The detection limit of the proposed SERS-ICA reached 46 cells/mL for S. pneumoniae and was 100-fold more sensitive than the traditional AuNPs-based colorimetric ICA method. Further, considering its good stability, specificity, reproducibility, and easy operation, the SiO2@20Au-SERS-ICA developed here has great potential to meet the demands of on-site and accurate detection of respiratory pathogens.

6.
Biomater Sci ; 11(2): 432-444, 2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36503914

ABSTRACT

The barrier function of host cells enables intracellular bacteria to evade the lethality of the host immune system and antibiotics, thereby causing chronic and recurrent infections that seriously threaten human health. Currently, the main clinical strategy for the treatment of intracellular bacterial infections involves the use of long-term and high-dose antibiotics. However, insufficient intracellular delivery of antibiotics along with various resistance mechanisms not only weakens the efficacy of current therapies but also causes serious adverse drug reactions, further increasing the disease and economic burden. Improving the delivery efficiency, intracellular accumulation, and action time of antibiotics remains the most economical and effective way to treat intracellular bacterial infections. The rapid development of nanotechnology provides a strategy to efficiently deliver antibiotics against intracellular bacterial infections into cells. In this review, we summarize the types of common intracellular pathogens, the difficulties faced by antibiotics in the treatment of intracellular bacterial infections, and the research progress of several types of representative nanocarriers for the delivery of antibiotics against intracellular bacterial infections that have emerged in recent years. This review is expected to provide a reference for further elucidating the intracellular transport mechanism of nanocarrier-drug complexes, designing safer and more effective nanocarriers and establishing new strategies against intracellular bacterial infection.


Subject(s)
Anti-Bacterial Agents , Bacterial Infections , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacterial Infections/drug therapy
7.
J Biol Eng ; 16(1): 33, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36457138

ABSTRACT

The frequency of outbreaks of newly emerging infectious diseases has increased in recent years. The coronavirus disease 2019 (COVID-19) outbreak in late 2019 has caused a global pandemic, seriously endangering human health and social stability. Rapid detection of infectious disease pathogens is a key prerequisite for the early screening of cases and the reduction in transmission risk. Fluorescence quantitative polymerase chain reaction (qPCR) is currently the most commonly used pathogen detection method, but this method has high requirements in terms of operating staff, instrumentation, venues, and so forth. As a result, its application in the settings such as poorly conditioned communities and grassroots has been limited, and the detection needs of the first-line field cannot be met. The development of point-of-care testing (POCT) technology is of great practical significance for preventing and controlling infectious diseases. Isothermal amplification technology has advantages such as mild reaction conditions and low instrument dependence. It has a promising prospect in the development of POCT, combined with the advantages of high integration and portability of microfluidic chip technology. This study summarized the principles of several representative isothermal amplification techniques, as well as their advantages and disadvantages. Particularly, it reviewed the research progress on microfluidic chip-based recombinase polymerase isothermal amplification technology and highlighted future prospects.

8.
J Med Virol ; 94(11): 5325-5335, 2022 11.
Article in English | MEDLINE | ID: mdl-35859097

ABSTRACT

Establishment of rapid on-site detection technology capable of concurrently detecting SARS-Cov-2 and influenza A virus is urgent to effectively control the epidemic from these two types of important viruses. Accordingly, we developed a reusable dual-channel optical fiber immunosensor (DOFIS), which utilized the evanescent wave-sensing properties and tandem detection mode of the mobile phase, effectively accelerating the detection process such that it can be completed within 10 min. It could detect the nucleoprotein of multiple influenza A viruses (H1N1, H3N2, and H7N9), as well as the spike proteins of the SARS-CoV-2 Omicron and Delta variants, and could respond to 20 TCID50 /ml SARS-CoV-2 pseudovirus and 100 TCID50 /ml influenza A (A/PR/8/H1N1), presenting lower limit of detection and wider linear range than enzyme-linked immunosorbent assay. The detection results on 26 clinical samples for SARS-CoV-2 demonstrated its specificity (100%) and sensitivity (94%), much higher than the sensitivity of commercial colloidal gold test strip (35%). Particularly, DOFIS might be reused more than 80 times, showing not only cost-saving but also potential in real-time monitoring of the pathogenic viruses. Therefore, this newly-developed DOFIS platform is low cost, simple to operate, and has broad spectrum detection capabilities for SARS-CoV-2 mutations and multiple influenza A strains. It may prove suitable for deployment as a rapid on-site screening and surveillance technique for infectious disease.


Subject(s)
Biosensing Techniques , COVID-19 , Influenza A Virus, H1N1 Subtype , Influenza A Virus, H7N9 Subtype , Influenza, Human , Humans , Immunoassay , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H3N2 Subtype/genetics , Influenza, Human/diagnosis , SARS-CoV-2/genetics
9.
J Hazard Mater ; 437: 129347, 2022 09 05.
Article in English | MEDLINE | ID: mdl-35753301

ABSTRACT

Rapid and sensitive detection of multiple foodborne bacteria without DNA amplification is still challenging. Here, we proposed an immunochromatographic assay (ICA) with multiplex analysis ability and high sensitivity for direct detection of bacteria in real food samples, based on an improved surface-enhanced Raman scattering (SERS) sensing strategy. Multifunctional Au shell-coated graphene oxide nanosheets (GO@Au) were fabricated and for the first time introduced into the ICA system as a two-dimensional film-like SERS label, which possessed huge surface area, excellent stability, and superior SERS activity. Different from the conventional spherical nanotags, the antibody-conjugated GO@Au nanosheet effectively and rapidly adhered to bacterial cells, improved the dispersibility of bacteria-nanolabel complexes on the ICA strips, and provided numerous stable hotspots for SERS signal enhancement. The combination of GO@Au labels and the ICA system achieved the multiplex and ultrasensitive determination of three major foodborne pathogens, namely, Staphylococcus aureus, Escherichia coli O157:H7, and Salmonella typhimurium, in a single test, with low detection limits (8, 10, and 10 cells/mL) and short detection time (20 min). The proposed biosensor demonstrated high stability and good accuracy in various food samples and is thus a promising tool for the rapid identification of bacteria.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , Bacteria , Biosensing Techniques/methods , Gold/chemistry , Immunoassay , Limit of Detection , Metal Nanoparticles/chemistry , Spectrum Analysis, Raman/methods
10.
Sci China Life Sci ; 65(8): 1504-1516, 2022 08.
Article in English | MEDLINE | ID: mdl-35287183

ABSTRACT

Emerging infectious diseases, such as COVID-19, continue to pose significant threats to human beings and their surroundings. In addition, biological warfare, bioterrorism, biological accidents, and harmful consequences arising from dual-use biotechnology also pose a challenge for global biosecurity. Improving the early surveillance capabilities is necessary for building a common biosecurity shield for the global community of health for all. Furthermore, surveillance could provide early warning and situational awareness of biosecurity risks. However, current surveillance systems face enormous challenges, including technical shortages, fragmented management, and limited international cooperation. Detecting emerging biological risks caused by unknown or novel pathogens is of particular concern. Surveillance systems must be enhanced to effectively mitigate biosecurity risks. Thus, a global strategy of meaningful cooperation based on efficient integration of surveillance at all levels, including interdisciplinary integration of techniques and interdepartmental integration for effective management, is urgently needed. In this paper, we review the biosecurity risks by analyzing potential factors at all levels globally. In addition to describing biosecurity risks and their impact on global security, we also focus on analyzing the challenges to traditional surveillance and propose suggestions on how to integrate current technologies and resources to conduct effective global surveillance.


Subject(s)
COVID-19 , Communicable Diseases, Emerging , Biosecurity , Bioterrorism/prevention & control , COVID-19/epidemiology , Communicable Diseases, Emerging/epidemiology , Communicable Diseases, Emerging/prevention & control , Humans , International Cooperation
11.
Virol J ; 18(1): 203, 2021 10 11.
Article in English | MEDLINE | ID: mdl-34635129

ABSTRACT

BACKGROUND: Chikungunya fever, caused by the Chikungunya virus (CHIKV), has become a major global health concern, causing unexpected large outbreaks in Africa, Asia, Europe, and the Americas. CHIKV is not indigenous to China, and its origin in the country is poorly understood. In particular, there is limited understanding of the recent global spread of CHIKV in the context of the CHIKV epidemic. METHODS: Here we investigated a novel Chikungunya patient who came from Myanmar to China in August, 2019. Direct genome sequencing was performed via combined MinION sequencing and BGISEQ-500 sequencing. A complete CHIKV genome dataset, including 727 CHIKV genomes retrieved from GenBank and the genome sequenced in this study, was constructed. An updated and comprehensive phylogenetic analysis was conducted to understand the virus's origin, evolution, transmission routes and genetic adaptation. RESULTS: All globally distributed CHIKV genomes were divided into West Africa, East/Central/South African and Asian genotypes. The genome sequenced in this study was located in the Indian Ocean lineage, and was closely related to a strain isolated from an Australian patient who returned from Bangladesh in 2017. A comprehensive phylogenetic analysis showed that the Chinese strains mainly originated from the Indian subcontinent and Southeast Asia. Further analyses indicated that the Indian subcontinent and Southeast Asia may act as major hubs for the recent global spread of CHIKV, leading to multiple outbreaks and epidemics. Moreover, we identified 179 distinct sites, including some undescribed sites in the structural and non-structural proteins, which exhibited apparent genetic variations associated with different CHIKV lineages. CONCLUSIONS: Here we report a novel CHIKV isolate from a chikungunya patient who came from Myanmar to China in 2019, and summarize the source and evolution of Chinese CHIKV strains. Our present findings provide a better understanding of the recent global evolution of CHIKV, highlighting the urgent need for strengthened surveillance against viral diversity.


Subject(s)
Chikungunya Fever , Chikungunya virus , Asia, Southeastern/epidemiology , Australia , Disease Outbreaks , Humans , Phylogeny
12.
J Biosaf Biosecur ; 3(2): 76-81, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34189427

ABSTRACT

COVID-19 is the most severe pandemic globally since the 1918 influenza pandemic. Effectively responding to this once-in-a-century global pandemic is a worldwide challenge that the international community needs to jointly face and solve. This study reviews and discusses the key measures taken by major countries in 2020 to fight against COVID-19, such as lockdowns, social distancing, wearing masks, hand hygiene, using Fangcang shelter hospitals, large-scale nucleic acid testing, close-contacts tracking, and pandemic information monitoring, as well as their prevention and control effects. We hope it can help improve the efficiency and effectiveness of pandemic prevention and control in future.

13.
ACS Appl Mater Interfaces ; 13(19): 22262-22270, 2021 May 19.
Article in English | MEDLINE | ID: mdl-33966371

ABSTRACT

The coronavirus disease 2019 (COVID-19) can present a similar syndrome to an influenza infection, which may complicate diagnosis and clinical management of these two important respiratory infectious diseases, especially during the peak season of influenza. A rapid and convenient point-of-care test (POCT) for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza virus is of great importance for prompt and efficient control of these respiratory epidemics. Herein, a multichannel electrochemical immunoassay (MEIA) platform was developed based on a disposable screen-printed carbon electrode (SPCE) array for the on-site detection of SARS-CoV-2 and A(H1N1). The developed MEIA was constructed with eight channels and allowed rapid detection on a single array. On the SPCE surface, monoclonal antibodies against influenza A(H1N1) hemagglutinin (HA) protein or SARS-CoV-2 spike protein were coated to capture the target antigens, which then interacted with a horseradish peroxidase (HRP)-labeled detection antibody to form an immuno-sandwich complex. The results showed that the MEIA exhibited a broader linear range than ELISA and comparable sensitivity for A(H1N1) HA and SARS-CoV-2 spike protein. The detection results on 79 clinical samples for A(H1N1) suggested that the proposed MEIA platform showed comparable results with ELISA in sensitivity (with a positive rate of 100% for positive samples) but higher specificity, with a false-positive rate of 5.4% for negative samples versus that of 40.5% with ELISA. Thus, it offers great potential for the on-the-spot differential diagnosis of infected patients, which would significantly benefit the efficient control and prevent the spread of these infectious diseases in communities or resource-limited regions in the future.


Subject(s)
Biosensing Techniques/methods , COVID-19/diagnosis , Electrochemical Techniques/methods , Immunoassay/methods , Influenza A Virus, H1N1 Subtype/isolation & purification , Influenza, Human/diagnosis , SARS-CoV-2/isolation & purification , Humans , Point-of-Care Testing , Sensitivity and Specificity
14.
Nanomedicine ; 21: 102035, 2019 10.
Article in English | MEDLINE | ID: mdl-31226414

ABSTRACT

The rapid, accurate and convenient detection of heavy metal is very important to public health. Here, we developed a DNAzyme-based electrochemical sensor for Pb2+. A DNAzyme-including and Pb2+ active probe was anchored to the biosensing interface, based on the well-defined self-assembled, three-dimensional DNA nanostructure. The results indicate that the detection performance depends on the change of distances between the methylene blue and the electrode surface. The limit of detection (LOD) could reach the concentration of 0.01 µM Pb2+, and the signal change shows semi-logarithmic relationship with the concentration of Pb2+ from 0.01 µM to 100 µM. The biosensor also presents good stability and specificity to detect Pb2+ in tap or river water. This method not only provides promising approach for improving the performance of tetrahedra in detecting Pb2+, but helps deepen the understanding of tetrahedral structure design and how the position of electroactive groups affects the performance of electrochemical sensing.


Subject(s)
Biosensing Techniques , DNA, Catalytic/chemistry , Metals/isolation & purification , Water Pollutants, Chemical/isolation & purification , Gold/chemistry , Ions/chemistry , Ions/isolation & purification , Lead/chemistry , Lead/isolation & purification , Limit of Detection , Metal Nanoparticles/chemistry , Metals/chemistry , Water Pollutants, Chemical/chemistry
15.
Lab Chip ; 18(22): 3507-3515, 2018 11 06.
Article in English | MEDLINE | ID: mdl-30351335

ABSTRACT

Respiratory viruses are major threats causing development of acute respiratory tract infections, which are common causes of illness and death throughout the world. Here, an integrated microsystem based on real-time colorimetry was developed for diagnosing multiple respiratory viruses. The microsystem employed magnetic beads for nucleic acid extraction and an eight-channel microfluidic array chip integrated with a loop-mediated isothermal amplification system for point-of-care screening of respiratory viruses. The overall detection process (including sample collection, nucleic acid extraction, sample loading, real-time detection, and signal output) could be completed within 1 h. Our results show that the developed method could specifically recognize influenza A virus subtypes (H1N1, H3N2, H5N1, and H7N9), influenza B virus, and human adenoviruses. The results obtained with 109 clinical samples indicate that the developed method has high specificity (100%, confidence interval 94.9-100.0) and sensitivity (96%, confidence interval 78.1-99.9). The integration of magnetic bead-based pre-treatment techniques and microfluidic isothermal amplification provides an effective solution for rapidly detecting etiological agents of respiratory diseases. The strategy of using a closed chip system and real-time colorimetry reduced aerosol contamination and ensured the accuracy of the results. The developed method provides an effective alternative for rapid point-of-care screening for viruses that cause respiratory disease syndromes and further aids in accurate and timely detection to control and prevent the spread of respiratory diseases caused by such pathogens.


Subject(s)
Adenoviridae/isolation & purification , Colorimetry/instrumentation , Lab-On-A-Chip Devices , Nucleic Acid Amplification Techniques/instrumentation , Orthomyxoviridae/isolation & purification , Adenoviridae/genetics , Humans , Magnetite Nanoparticles/chemistry , Orthomyxoviridae/genetics , Time Factors
16.
BMC Infect Dis ; 18(1): 292, 2018 07 03.
Article in English | MEDLINE | ID: mdl-29970024

ABSTRACT

BACKGROUND: Among 2179 Salmonella isolates obtained during national surveillance for salmonellosis in China from 2005 to 2013, we identified 46 non-H2S-producing strains originating from different sources. METHODS: The isolates were characterized in terms of antibiotic resistance and genetic variability by pulsed-field gel electrophoresis and multilocus sequence typing. Mutation in the phs operon, which may account for the non-H2S-producing phenotype of the isolated Salmonella strains, was performed in this study. RESULTS: Among isolated non-H2S-producing Salmonella strains, more than 50% were recovered from diarrhea patients, of which H2S-negative S. Gallinarum, S. Typhimurium, S. Choleraesuis and S. Paratyphi A isolates constituted 76%. H2S-negative isolates exhibited a high rate of resistance to ticarcillin, ampicillin, and tetracycline, and eight of them had the multidrug resistance phenotype. Most H2S-negative Salmonella isolates had similar pulsed-field gel electrophoresis profiles and the same sequence type as H2S-positive strains, indicating a close origin, but carried mutations in the phsA gene, which may account for the non-H2S-producing phenotype. CONCLUSIONS: Our data indicate that multiple H2S-negative strains have emerged and persist in China, emphasizing the necessity to implement efficient surveillance measures for controlling dissemination of these atypical Salmonella strains.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial , Hydrogen Sulfide/metabolism , Salmonella Infections/microbiology , Salmonella/drug effects , Animals , China , Electrophoresis, Gel, Pulsed-Field , Humans , Microbial Sensitivity Tests , Multilocus Sequence Typing , Phenotype , Salmonella/genetics , Salmonella/isolation & purification , Salmonella/metabolism , Salmonella enterica , Serogroup
17.
Sci Rep ; 8(1): 10653, 2018 Jul 13.
Article in English | MEDLINE | ID: mdl-30006537

ABSTRACT

The emergence of carbapenemase-producing Citrobacter freundii poses a significant threat to public health worldwide. Here, we reported a C. freundii strain CWH001 which was resistant to all tested antimicrobials except tetracycline. Whole genome sequencing and analysis were performed. The strain, which belonged to a new sequence type ST139, showed close relationship with other foreign C. freundii strains through phylogenetic analysis. A novel variant of the intrinsic blaCMY gene located on the chromosome was identified and designated as blaCMY-152. Coexistence of blaNDM-1 with qnrS1 was found on a conjugative IncN plasmid, which had a backbone appearing in various plasmids. Other class A ESBL genes (blaVEB-3 and blaTEM-1) were also detected on two different novel plasmids. The emergence of multidrug-resistant C. freundii is of major concern, causing great challenges to the treatment of clinical infections. Great efforts need to be taken for the specific surveillance of this opportunistic pathogen.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Citrobacter freundii/genetics , Drug Resistance, Multiple, Bacterial/genetics , beta-Lactamases/genetics , Anti-Bacterial Agents/therapeutic use , Bacterial Proteins/metabolism , Bacterial Typing Techniques , China , Citrobacter freundii/classification , Citrobacter freundii/isolation & purification , Citrobacter freundii/metabolism , Enterobacteriaceae Infections/drug therapy , Enterobacteriaceae Infections/microbiology , Humans , Microbial Sensitivity Tests , Plasmids/genetics , beta-Lactamases/metabolism
18.
ACS Appl Mater Interfaces ; 10(21): 17617-17629, 2018 May 30.
Article in English | MEDLINE | ID: mdl-29767946

ABSTRACT

Various silver nanoparticle (AgNP)-decorated graphene oxide (GO) nanocomposites (GO-Ag) have received increasing attention owing to their antimicrobial activity and biocompatibility; however, their aggregation in physiological solutions and the generally complex synthesis methods warrant improvement. This study aimed to synthesize a polyethyleneimine (PEI)-modified and AgNP-decorated GO nanocomposite (GO-PEI-Ag) through a facile approach through microwave irradiation without any extra reductants and surfactants; its antimicrobial activity was investigated on Gram-negative/-positive bacteria (including drug-resistant bacteria) and fungi. Compared with GO-Ag, GO-PEI-Ag acquired excellent stability in physiological solutions and electropositivity, showing substantially higher antimicrobial efficacy. Moreover, GO-PEI-Ag exhibited particularly excellent long-term effects, presenting no obvious decline in antimicrobial activity after 1 week storage in physiological saline and repeated use for three times and the lasting inhibition of bacterial growth in nutrient-rich culture medium. In contrast, GO-Ag exhibited a >60% decline in antimicrobial activity after storage. Importantly, GO-PEI-Ag effectively eliminated adhered bacteria, thereby preventing biofilm formation. The primary antimicrobial mechanisms of GO-PEI-Ag were evidenced as physical damage to the pathogen structure, causing cytoplasmic leakage. Hence, stable GO-PEI-Ag with robust, long-term antimicrobial activity holds promise in combating public-health threats posed by drug-resistant bacteria and biofilms.


Subject(s)
Graphite/chemistry , Anti-Bacterial Agents , Metal Nanoparticles , Nanocomposites , Polyethyleneimine , Silver
19.
Int J Antimicrob Agents ; 52(1): 14-21, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29501823

ABSTRACT

Since the plasmid-mediated polymyxin resistance gene mcr-1 was first reported in Escherichia coli and Klebsiella pneumoniae in China, only one mcr-1-positive isolate of Shigella sonnei, containing inactivated mcr-1, has been reported worldwide. In this study, 1650 historical S. sonnei strains isolated from 2003-2015 in China were screened for the mcr-1 gene. Antimicrobial susceptibilities and resistance genes of mcr-1-positive isolates were determined, and the transferability of polymyxin resistance by plasmid conjugation was investigated. Pulsed-field gel electrophoresis (PFGE), plasmid profiles and Southern blotting were used to analyse genetic relationships and plasmid characteristics, and mcr-1-positive plasmids were sequenced. Six mcr-1-positive S. sonnei isolates from Shanghai (2010-2012) with polymyxin B resistance (MICs 4-8 µg/mL) were identified. Four of these exhibited multidrug resistance, including resistance to azithromycin and third-generation cephalosporins, and co-harboured blaCTX-M-14, mph(A) and blaTEM on different plasmids. mcr-1-positive plasmids shared highly similar IncI2 backbones that resembled reference plasmids, although some differences were observed, including various and abundant insertion sequences/patterns (IS1294, IS1 and ISApl1) and a diverse recombination shufflon region. mcr-1 in S. sonnei may date back to mid-2006. Here we report for the first time the presence of active mcr-1 in multidrug-resistant S. sonnei in China, which has existed since at least 2010. This study highlights the diverse mobile genetic elements on mcr-1-harboring plasmids, potentially resulting in high rates of mcr-1 horizontal transfer among Enterobacteriaceae. These findings emphasise the importance of continuous national and international surveillance of mcr-1-positive Shigella and changes in antibiotic resistance patterns.


Subject(s)
Bacterial Proteins/genetics , Drug Resistance, Multiple, Bacterial/genetics , Shigella sonnei/drug effects , Shigella sonnei/genetics , Adult , Blotting, Southern , China , Conjugation, Genetic , Dysentery, Bacillary/microbiology , Electrophoresis, Gel, Pulsed-Field , Humans , Microbial Sensitivity Tests , Plasmids/genetics , Polymyxin B/pharmacology , Shigella sonnei/isolation & purification
20.
Acta Trop ; 178: 86-92, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29102457

ABSTRACT

Malaria infection poses a great threaten to public health even nowadays. The conventional diagnosis tools of malaria parasites and vectors require systematic training for the observers accompanied by the low throughput. In this study, a new detection system, i.e., multiplex microfluidic loop-mediated isothermal amplification (mµLAMP) array, was developed to provide a convenient, rapid and economical detection system for malaria diagnosis. A microfluidic-based detection chip was designed and developed, targeting the conserved gene of four Anopheles and two Plasmodium species responsible for most of the malaria cases occurred in China. The DNA preparation of Anopheles and Plasmodium samples was realized by using a newly-developed DNA extraction method. For this mµLAMP array system, the detection limit was determined to be 1pg of targeting DNA with high sensitivity (>95%) and specificity (100%). Further, the accuracy of such mµLAMP analysis was evaluated by the analysis of 48 Anopheles mosquito samples, of which 30 were termed to be target Anopheles, displaying high consistency with that by morphological analysis. In conclusion, the mµLAMP detection system was proved to be a visible, sensitive, specific and high-throughput diagnostic tool. Considering the portable manipulation of such detection system, our studies shed light on its potential application of malaria surveillance on the spot.


Subject(s)
Anopheles/parasitology , Malaria/diagnosis , Mosquito Vectors/parasitology , Nucleic Acid Amplification Techniques/methods , Plasmodium/isolation & purification , Animals , China , Humans , Microfluidics , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...