Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 29(5)2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38474525

ABSTRACT

Wood is a naturally porous material prone to microbial erosion and degradation in outdoor environments. Therefore, the development of an environmentally friendly wood preservative with excellent antibacterial effects and low toxicity is urgently needed. In this study, nitrogen-doped carbon quantum dots (N-CQDs) with excellent antifungal performance and fluorescent properties were synthesized using a one-step hydrothermal method with chitosan quaternary ammonium salt (HACC) as the raw material. The fluorescence characteristics of N-CQD preservatives can help track their position and distribution in wood. The minimum inhibitory concentration (MIC) of N-CQDs is 1.8 mg/mL, which was nearly 22 times lower than that of HACC (40.0 mg/mL) in the PDA medium. The decay resistance test demonstrated that wood treated with N-CQDs showed a considerably reduced decay degree and its mass loss rate decreased from 46 ± 0.5% to 3.8 ± 0.5%. Biological transmission electron microscopy revealed that N-CQDs effectively destroyed fungal cell structures, thereby hindering the growth of Coriolus versicolor. N-CQDs synthesized using the one-step hydrothermal method can be used as an efficient wood preservative that can effectively improve the utilization and service life of wood.


Subject(s)
Antifungal Agents , Quantum Dots , Wood , Quantum Dots/chemistry , Anti-Bacterial Agents , Microscopy, Electron, Transmission , Carbon/chemistry
2.
Chemosphere ; 339: 139635, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37495055

ABSTRACT

Renewable biomass and its waste are considered among the most promising applications materials owing to the depletion of fossil fuel and concerns about environmental pollution. Notably, advanced porous carbon materials derived from carbon-rich biomass precursors exhibit controllable pore structures, large surface areas, natural microstructures, and abundant functional groups. In addition, these three-dimensional structures provide sufficient reaction sites and fascinating physicochemical properties that are conducive to heteroatom doping and functional modification. This review systematically summarizes the design methods and related mechanisms of biomass-derived porous carbon materials (BDPCMs), discusses how the synthesis conditions influence the structure and performance of the carbon material, and emphasizes the importance of its use in energy utilization and environmental remediation applications. Current BDPCMs challenges and future development strategies are finally discussed to provide systematic information for further synthesis and performance optimization, which are expected to lead to novel ideas for the future development of bio-based carbon materials.


Subject(s)
Carbon , Environmental Restoration and Remediation , Biomass , Carbon/chemistry , Porosity , Environmental Pollution
SELECTION OF CITATIONS
SEARCH DETAIL
...