Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Glob Chang Biol ; 29(24): 7117-7130, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37800353

ABSTRACT

Replacing synthetic fertilizer by organic manure has been shown to reduce emissions of nitrous oxide (N2 O), but the specific roles of ammonia oxidizing microorganisms and gross nitrogen (N) transformation in regulating N2 O remain unclear. Here, we examined the effect of completely replacing chemical fertilizer with organic manure on N2 O emissions, ammonia oxidizers, gross N transformation rates using a 13-year field manipulation experiment. Our results showed that organic manure reduced cumulative N2 O emissions by 16.3%-210.3% compared to chemical fertilizer. The abundance of ammonia oxidizing bacteria (AOB) was significantly lower in organic manure compared with chemical fertilizer during three growth stages of maize. Organic manure also significantly decreased AOB alpha diversity and changed their community structure. However, organic manure substitution increased the abundance of ammonia oxidizing archaea and the alpha diversity of comammox Nitrospira compared to chemical fertilizer. Interestingly, organic manure decreased organic N mineralization by 23.2%-32.9%, and autotrophic nitrification rate by 10.5%-45.4%, when compared with chemical fertilizer. This study also found a positive correlation between AOB abundance, organic N mineralization and gross autotrophic nitrification rate with N2 O emission, and their contribution to N2 O emission was supported by random forest analysis. Our study highlights the key roles of ammonia oxidizers and N transformation rates in predicting cropland N2 O.


Subject(s)
Fertilizers , Soil , Soil/chemistry , Fertilizers/analysis , Ammonia/analysis , Manure , Nitrogen/analysis , Soil Microbiology , Oxidation-Reduction , Archaea , Nitrification
2.
Sci Total Environ ; 859(Pt 1): 160255, 2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36402341

ABSTRACT

Land-use change is one of the greatest challenges for natural ecosystem services. Soil microbiomes are essential for modulating multiple ecosystem functions. However, little is known about the impact of land-use changes on soil microbial communities and their associated soil functions. In this study, 150 alpine soil samples representing conversion of forests to shrublands or grasslands, and of shrublands to grasslands were investigated for bacterial, fungal and protistan community diversity, co-occurrence network, as well as their relationships with soil multifunctionality via a sampling strategy of space-for-time substitution. The conversion of forest to grassland increased the diversity of fungi and bacteria, and altered the microbial community structures of bacteria, fungi and protists, resulting a greater impact on soil microbiome than other land-use conversions. Cross-trophic interaction analyses demonstrated this conversion increased microbial network complexity and robustness, whereas forest to shrubland had the opposite trend. The land-use induced changes in soil multifunctionality were related with microbial network modules, but were not always associated with variations of microbial diversity. Random forest modeling further suggested the significant role of microbial modules in explaining soil multifunctionality, together with environmental factors. These findings indicate divergent responses of belowground multitrophic organisms to land-use changes, and the potential role of microbial module in forecasting soil multifunctionality.


Subject(s)
Microbiota , Soil , Soil/chemistry , Ecosystem , Soil Microbiology , Biodiversity , Bacteria , Grassland
SELECTION OF CITATIONS
SEARCH DETAIL