Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Phytomedicine ; 108: 154512, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36288652

ABSTRACT

BACKGROUND: Feruloylated oligosaccharides (FOs) are natural esterification products of ferulic acid and oligosaccharides. STUDY DESIGN: In this study, we examined whether FOs contribute to the ensured survival of nigrostriatal dopamine neurons and inhibition of neuroinflammation in Parkinson's disease (PD). METHODS: 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP, 30 mg/kg) was injected intraperitoneally into mice to establish a Parkinson's disease (PD) mouse model. FOs (15 and 30 mg/kg) were orally administered daily to the MPTP-treated mice. The rotarod test, balance beam test, immunofluorescence, enzyme-linked immunosorbent assay (ELISA), quantitative PCR (qPCR), and western blot analyses were performed to examine the neuroprotective effects of FOs on MPTP-treated mice. RESULTS: Our study indicated that FOs increased the survival of dopamine neurons in the substantia nigra pars compacta (SNc) of the MPTP-treated mice. The neuroprotective effects of FOs were accompanied by inhibited glial activation and reduced inflammatory cytokine production. The mechanistic experiments revealed that the neuroprotective effects of FOs might be mediated through the activation of the ERK/CREB/BDNF/TrkB signalling pathway. CONCLUSION: This study provides new insights into the mechanism underlying the anti-neuroinflammatory effect of phytochemicals and may facilitate the development of dietary supplements for PD patients. Our results indicate that FOs can be used as potential modulators for the prevention and treatment of PD.


Subject(s)
MPTP Poisoning , Neuroprotective Agents , Parkinson Disease , Mice , Animals , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/metabolism , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/therapeutic use , Brain-Derived Neurotrophic Factor/metabolism , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Mice, Inbred C57BL , MPTP Poisoning/drug therapy , MPTP Poisoning/metabolism , MPTP Poisoning/prevention & control , Dopaminergic Neurons , Disease Models, Animal , Oligosaccharides/pharmacology
2.
Article in English | MEDLINE | ID: mdl-35077841

ABSTRACT

Depression is the second most common psychiatric disorder, affecting more than 340 million people of all ages worldwide. However, the mechanisms underlying the development of depression remain unclear, and existing antidepressants may cause clinical dependence and toxic side effects. Recently, emerging evidence from the fields of neuroscience, genetics, and genomics supports the modulatory role of long non-coding RNA (lncRNA) in depression. LncRNAs may mediate the pathogenesis of depression through multiple pathways, including regulating neurotransmitters and neurotrophic factors, affecting synaptic conduction, and regulating the ventriculo-olfactory neurogenic system. In addition, relying on genome-wide association study and molecular biological experiment, the possibility of lncRNA as a potential biomarker for the differential diagnosis of depression and other mental illnesses, including schizophrenia and anxiety disorders, is gradually being revealed. Thus, it is important to explore whether lncRNAs are potential therapeutic targets and diagnostic biomarkers for depression. Here, we summarize the genesis and function of lncRNAs and discuss the aberrant expression and functional roles of lncRNAs in the development, diagnosis, and therapy of depression, as well as the deficiencies and limitations of these studies. Moreover, we established a lncRNA-miRNA-mRNA-pathway-drug network of depression through bioinformatics analysis methods to deepen our understanding of the relationship between lncRNA and depression, promoting the clinical application of epigenetic research.


Subject(s)
Depression , RNA, Long Noncoding/genetics , Computational Biology , Depression/genetics , Depression/physiopathology , Epigenomics , Gene Expression Profiling , Gene Regulatory Networks , Genome-Wide Association Study , Humans , MicroRNAs/genetics , RNA, Messenger/genetics
3.
Food Funct ; 12(24): 12550-12564, 2021 Dec 13.
Article in English | MEDLINE | ID: mdl-34812830

ABSTRACT

The gut microbiome is known to be involved in depression development. Thus, phytochemicals changing gut microbiota may alleviate depression-like behaviors. Coniferyl ferulate (CF) is a long studied natural product and known to alleviate psychiatric disorders. However, its mechanism of action remains unclear. In this experimental study, oral administration of 50 mg kg-1 CF once daily attenuated weight loss and depression-like and anxiety-like behaviors induced by chronic unpredicted mild stress (CUMS) in mice. Four weeks of CF administration significantly ameliorated colonic inflammation, lowered the levels of IL-6, IL-1ß, and TNF-α, and restructured the gut microbiome, and microbial metabolism. Intestinal microbiota can impact the development and function of the brain via the microbiota-gut-brain axis. Therefore, oral administration of CF is a promising nutritional strategy to treat CUMS-induced depression via the regulation of microbiota and microbial metabolism.


Subject(s)
Behavior, Animal/drug effects , Coumaric Acids/pharmacology , Depression/drug therapy , Depression/metabolism , Gastrointestinal Microbiome/drug effects , Administration, Oral , Animals , Coumaric Acids/administration & dosage , Coumaric Acids/metabolism , Disease Models, Animal , Male , Mice , Mice, Inbred C57BL
4.
Article in English | MEDLINE | ID: mdl-33505499

ABSTRACT

Depression is the neurological manifestation most commonly associated with gastrointestinal diseases. The release of inflammatory cytokines mediated by TLR4/NLRP3 inflammasome signaling-induced immunoinflammatory activation may represent a common pathogenic process underlying the development of gastrointestinal diseases and depression. Clinical studies have indicated that Xiaoyaosan (XYS) can relieve depressive behavior by improving gastrointestinal symptoms. We previously demonstrated that XYS can reduce colonic inflammation in a rat model of chronic unpredictable mild stress; however, the precise anti-inflammatory mechanisms involved remain unclear. Here, we investigated whether XYS can ameliorate depressive behavior through regulating the TLR4/NLRP3 inflammasome signaling pathway, thereby inhibiting immunoinflammatory activation and reducing colonic proinflammatory cytokine levels. Fifty-two healthy male Sprague-Dawley rats were randomly divided into four groups (control, model, XYS, and fluoxetine). The latter three groups were subjected to 21 days of chronic restraint stress to generate a model of stress-induced depression. XYS and fluoxetine were administered intragastrically. Behavioral changes in the rats were assessed after 21 days. Serum and colon samples were collected, and the relative levels of the inflammation indicators IL-6, IL-1ß, and TNF-α were determined by ELISA. Pathological changes in colon tissue were assessed by hematoxylin and eosin staining. The levels of TLR4, MyD88, NF-κB-p65, TAK1, IRAK1, and TRAF6 were detected by immunohistochemistry, while the gene and protein expression levels of TLR4, MyD88, NF-κB-p65, TAK1, IRAK1, TRAF6, NLRP3, ASC, and caspase-1 were detected by quantitative polymerase chain reaction (qPCR) and Western blotting. The results indicated that XYS could improve the depressive-like behavior and the weight loss of rats with stress-induced depression. Furthermore, depressed rats treated with XYS exhibited decreased expression levels of TLR4, MyD88, NF-κB-p65, TAK1, IRAK1, TRAF6, NLRP3, ASC, and caspase-1 in colonic tissue; reduced colon and serum concentrations of the inflammatory factors IL-6, IL-1ß, and TNF-α; and lowered levels of colonic inflammation.

5.
J Agric Food Chem ; 68(52): 15490-15500, 2020 Dec 30.
Article in English | MEDLINE | ID: mdl-33170671

ABSTRACT

As one of the empirical models of the chronic central inflammatory response, a spinal cord injury (SCI) deteriorates the neuronal survival and results in irreversible motor and sensory dysfunction below the injury area. Our previous studies have reported that maize bran feruloylated oligosaccharides (FOs) exert significant anti-inflammatory activities both in diabetes and colitis. However, no direct evidence of FOs alleviating central nervous inflammation was stated. This study aimed to investigate the therapeutic effect of FOs on SCI and its potential mechanism. Our results indicated that 4 weeks of FO administration effectively mitigated the inflammatory response via decreasing the number of microglia (labelled with Iba1), result in the expression of IL-1α, IL-2, IL-6, IL-18 and TNF-α downregulating, but the level of IL-10 and BDNF increases in the injured spinal cord. Moreover, FOs enhanced neuronal survival, ameliorated the scar cavities, and improved behaviors, including Basso mouse scale (BMS) scores and the gait of mice after SCI. Together, these results demonstrated that administration of FOs showed superior functional recovery effects in a SCI model. Also, FOs may modulate inflammatory activities by regulating the expression of proinflammatory factors, decreasing the production of inflammatory cells, and promoting functional recovery through the MAPK pathway following SCI.


Subject(s)
Oligosaccharides/administration & dosage , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/immunology , Animals , Coumaric Acids/metabolism , Cytokines/genetics , Cytokines/immunology , Female , Humans , Mice , Motor Activity , Oligosaccharides/chemistry , Recovery of Function , Spinal Cord/drug effects , Spinal Cord/immunology , Spinal Cord/physiopathology , Spinal Cord Injuries/genetics , Spinal Cord Injuries/physiopathology
6.
Psychiatry Res ; 284: 112691, 2020 02.
Article in English | MEDLINE | ID: mdl-31791704

ABSTRACT

Emerging evidence indicates that disruption of the intestinal flora play an important role in the pathogenesis of depression. As one of the causes of such disturbances, the role of antibiotics in depression risk is gradually being revealed. Herein, we review recent findings showing that the use of both single and multiple antibiotic regimens may be related to depression by changing the gut microbiota and the brain-gut axis. Based on recent discoveries, we also suggest that several brain-gut interactive mechanisms (particularly those involving nerve and glial cells, neurotransmitters, brain neurotrophic factors, inflammatory factors, short-chain fatty acids, circulating metabolites, blood-brain barrier, and oxidative stress) may help understand the effects of antibiotics on intestinal flora and its relationship with depression.


Subject(s)
Anti-Bacterial Agents/adverse effects , Brain/drug effects , Depression/chemically induced , Depression/psychology , Gastrointestinal Microbiome/drug effects , Animals , Anti-Bacterial Agents/pharmacology , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Brain/metabolism , Depression/metabolism , Gastrointestinal Microbiome/physiology , Humans , Oxidative Stress/drug effects , Oxidative Stress/physiology
7.
Biomed Pharmacother ; 112: 108621, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30798141

ABSTRACT

Depression has become the leading cause of disability worldwide and a growing public health problem in China. In addition, intestinal flora may be associated with depression. This study investigated the effect of the decoction Xiaoyaosan (XYS) against depressive behavior through the regulation of intestinal flora. Fifty-two healthy male Sprague-Dawley rats were randomly divided into four groups (i.e., control, model, XYS, and fluoxetine). The latter three groups were subjected to 21 days of chronic restraint stress to produce the stress depression model. Rats in the XYS and fluoxetine groups received intragastric administration of XYS and fluoxetine, respectively. The behavioral changes of the rats were observed after 21 days. Stool specimens were sequenced using the 16S rDNA high-throughput method to detect the structure and changes in intestinal flora. There was no difference observed in alpha diversity among the groups. At the phylum level, XYS regulated the abundance of Bacteroidetes, Proteobacteria, Firmicutes, Chloroflexi, and Planctomycetes. At the genus level, XYS reduced the abundance of the Prevotellaceae_Ga6A1_group, Prevotellaceae_UCG-001, and Desulfovibrio. On the contrary, it increased the abundance of the Ruminococcaceae family to improve depression-like behavior. The mechanism involved in this process may be related to short-chain fatty acids, lipopolysaccharides, and intestinal inflammation.


Subject(s)
Depression/drug therapy , Drugs, Chinese Herbal/therapeutic use , Gastrointestinal Microbiome/drug effects , Immobilization , Stress, Psychological/drug therapy , Animals , Depression/microbiology , Depression/psychology , Drugs, Chinese Herbal/pharmacology , Gastrointestinal Microbiome/physiology , Immobilization/psychology , Male , Random Allocation , Rats , Rats, Sprague-Dawley , Stress, Psychological/microbiology , Stress, Psychological/psychology
SELECTION OF CITATIONS
SEARCH DETAIL
...