Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Cancer Lett ; 596: 217009, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38849015

ABSTRACT

Renal cell carcinoma (RCC) bone metastatis progression is driven by crosstalk between tumor cells and the bone microenvironment, which includes osteoblasts, osteoclasts, and osteocytes. RCC bone metastases (RCCBM) are predominantly osteolytic and resistant to antiresorptive therapy. The molecular mechanisms underlying pathologic osteolysis and disruption of bone homeostasis remain incompletely understood. We previously reported that BIGH3/TGFBI (transforming growth factor-beta-induced protein ig-h3, shortened to BIGH3 henceforth) secreted by colonizing RCC cells drives osteolysis by inhibiting osteoblast differentiation, impairing healing of osteolytic lesions, which is reversible with osteoanabolic agents. Here, we report that BIGH3 induces osteocyte apoptosis in both human RCCBM tissue specimens and in a preclinical mouse model. We also demonstrate that BIGH3 reduces Cx43 expression, blocking gap junction (GJ) function and osteocyte network communication. BIGH3-mediated GJ inhibition is blocked by the lysosomal inhibitor hydroxychloroquine (HCQ), but not osteoanabolic agents. Our results broaden the understanding of pathologic osteolysis in RCCBM and indicate that targeting the BIGH3 mechanism could be a combinational strategy for the treatment of RCCBM-induced bone disease that overcomes the limited efficacy of antiresorptives that target osteoclasts.


Subject(s)
Apoptosis , Bone Neoplasms , Carcinoma, Renal Cell , Extracellular Matrix Proteins , Gap Junctions , Kidney Neoplasms , Osteocytes , Osteocytes/metabolism , Osteocytes/pathology , Humans , Animals , Bone Neoplasms/secondary , Bone Neoplasms/metabolism , Bone Neoplasms/pathology , Bone Neoplasms/drug therapy , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/secondary , Apoptosis/drug effects , Kidney Neoplasms/pathology , Kidney Neoplasms/metabolism , Kidney Neoplasms/drug therapy , Gap Junctions/metabolism , Gap Junctions/pathology , Extracellular Matrix Proteins/metabolism , Mice , Disease Progression , Connexin 43/metabolism , Cell Line, Tumor , Transforming Growth Factor beta/metabolism , Osteolysis/pathology , Osteolysis/metabolism , Female
2.
bioRxiv ; 2024 May 10.
Article in English | MEDLINE | ID: mdl-38765966

ABSTRACT

Microenvironment niches determine cellular fates of metastatic cancer cells. However, robust and unbiased approaches to identify niche components and their molecular profiles are lacking. We established Sortase A-Based Microenvironment Niche Tagging (SAMENT), which selectively labels cells encountered by cancer cells during metastatic colonization. SAMENT was applied to multiple cancer models colonizing the same organ and the same cancer to different organs. Common metastatic niche features include macrophage enrichment and T cell depletion. Macrophage niches are phenotypically diverse between different organs. In bone, macrophages express the estrogen receptor alpha (ERα) and exhibit active ERα signaling in male and female hosts. Conditional knockout of Esr1 in macrophages significantly retarded bone colonization by allowing T cell infiltration. ERα expression was also discovered in human bone metastases of both genders. Collectively, we identified a unique population of ERα+ macrophages in the metastatic niche and functionally tied ERα signaling in macrophages to T cell exclusion during metastatic colonization. HIGHLIGHTS: SAMENT is a robust metastatic niche-labeling approach amenable to single-cell omics.Metastatic niches are typically enriched with macrophages and depleted of T cells.Direct interaction with cancer cells induces ERα expression in niche macrophages. Knockout of Esr1 in macrophages allows T cell infiltration and retards bone colonization.

3.
bioRxiv ; 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38712292

ABSTRACT

Tumor-associated neutrophils (TANs) have been shown to promote immunosuppression and tumor progression, and a high TAN frequency predicts poor prognosis in triple-negative breast cancer (TNBC). Dysregulation of CREB binding protein (CBP)/P300 function has been observed with multiple cancer types. The bromodomain (BRD) of CBP/P300 has been shown to regulate its activity. In this study, we found that IACS-70654, a novel and selective CBP/P300 BRD inhibitor, reduced TANs and inhibited the growth of neutrophil-enriched TNBC models. In the bone marrow, CBP/P300 BRD inhibition reduced the tumor-driven abnormal differentiation and proliferation of neutrophil progenitors. Inhibition of CBP/P300 BRD also stimulated the immune response by inducing an IFN response and MHCI expression in tumor cells and increasing tumor-infiltrated CTLs. Moreover, IACS-70654 improved the response of a neutrophil-enriched TNBC model to docetaxel and immune checkpoint blockade. This provides a rationale for combining a CBP/P300 BRD inhibitor with standard-of-care therapies in future clinical trials for neutrophil-enriched TNBC.

4.
Neuroimage ; 291: 120586, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38548039

ABSTRACT

Creativity, a high-order cognitive ability, has received wide attention from researchers and educators who are dedicated to promoting its development throughout one's lifespan. Currently, creativity is commonly assessed with divergent thinking tasks, such as the Alternative Uses Task. Recent advancements in neuroimaging techniques have enabled the identification of brain markers for high-order cognitive abilities. One such brain structure of interest in this regard is the hippocampus, which has been found to play an important role in generating creative thoughts in adulthood. However, such role of the hippocampus in childhood is not clear. Thus, this study aimed to investigate the associations between creativity, as measured by divergent thinking, and both the volume of the hippocampus and its resting-state functional connectivity in 116 children aged 8-12 years. The results indicate significant relations between divergent thinking and the volume of the hippocampal head and the hippocampal tail, as well as the volume of a subfield comprising cornu ammonis 2-4 and dentate gyrus within the hippocampal body. Additionally, divergent thinking was significantly related to the differences between the anterior and the posterior hippocampus in their functional connectivity to other brain regions during rest. These results suggest that these two subregions may collaborate with different brain regions to support diverse cognitive processes involved in the generation of creative thoughts. In summary, these findings indicate that divergent thinking is significantly related to the structural and functional characteristics of the hippocampus, offering potential insights into the brain markers for creativity during the developmental stage.


Subject(s)
Brain , Magnetic Resonance Imaging , Child , Humans , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Creativity , Cognition , Brain Mapping/methods , Hippocampus/diagnostic imaging
5.
BMC Med ; 21(1): 167, 2023 05 04.
Article in English | MEDLINE | ID: mdl-37143078

ABSTRACT

BACKGROUND: Early iron deficiency (ID) is a common risk factor for poorer neurodevelopment, limiting children's potential and contributing to global burden. However, it is unclear how early ID alters the substrate of brain functions supporting high-order cognitive abilities and whether the timing of early ID matters in terms of long-term brain development. This study aimed to examine the effects of ID during fetal or early postnatal periods on brain activities supporting proactive and reactive cognitive control in pre-adolescent children. METHODS: Participants were part of a longitudinal cohort enrolled at birth in southeastern China between December 2008 and November 2011. Between July 2019 and October 2021, 115 children aged 8-11 years were invited to participate in this neuroimaging study. Final analyses included 71 children: 20 with fetal ID, 24 with ID at 9 months (postnatal ID), and 27 iron-sufficient at birth and 9 months. Participants performed a computer-based behavioral task in a Magnetic Resonance Imaging scanner to measure proactive and reactive cognitive control. Outcome measures included accuracy, reaction times, and brain activity. Linear mixed modeling and the 3dlme command in Analysis of Functional NeuroImages (AFNI) were separately used to analyze behavioral performance and neuroimaging data. RESULTS: Faster responses in proactive vs. reactive conditions indicated that all groups could use proactive or reactive cognitive control according to contextual demands. However, the fetal ID group was lower in general accuracy than the other 2 groups. Per the demands of cues and targets, the iron-sufficient group showed greater activation of wide brain regions in proactive vs. reactive conditions. In contrast, such condition differences were reversed in the postnatal ID group. Condition differences in brain activation, shown in postnatal ID and iron-sufficient groups, were not found in the fetal ID group. This group specifically showed greater activation of brain regions in the reward pathway in proactive vs. reactive conditions. CONCLUSIONS: Early ID was associated with altered brain functions supporting proactive and reactive cognitive control in childhood. Alterations differed between fetal and postnatal ID groups. The findings imply that iron supplement alone is insufficient to prevent persisting brain alterations associated with early ID. Intervention strategies in addition to the iron supplement should consider ID timing.


Subject(s)
Anemia, Iron-Deficiency , Iron Deficiencies , Infant, Newborn , Pregnancy , Female , Child , Adolescent , Humans , Iron/pharmacology , Brain/diagnostic imaging , Prenatal Care , Cognition
6.
Cell Stem Cell ; 30(5): 648-664.e8, 2023 05 04.
Article in English | MEDLINE | ID: mdl-37146584

ABSTRACT

Remote tumors disrupt the bone marrow (BM) ecosystem (BME), eliciting the overproduction of BM-derived immunosuppressive cells. However, the underlying mechanisms remain poorly understood. Herein, we characterized breast and lung cancer-induced BME shifts pre- and post-tumor removal. Remote tumors progressively lead to osteoprogenitor (OP) expansion, hematopoietic stem cell dislocation, and CD41- granulocyte-monocyte progenitor (GMP) aggregation. The tumor-entrained BME is characterized by co-localization between CD41- GMPs and OPs. OP ablation abolishes this effect and diminishes abnormal myeloid overproduction. Mechanistically, HTRA1 carried by tumor-derived small extracellular vesicles upregulates MMP-13 in OPs, which in turn induces the alterations in the hematopoietic program. Importantly, these effects persist post-surgery and continue to impair anti-tumor immunity. Conditional knockout or inhibition of MMP-13 accelerates immune reinstatement and restores the efficacies of immunotherapies. Therefore, tumor-induced systemic effects are initiated by OP-GMP crosstalk that outlasts tumor burden, and additional treatment is required to reverse these effects for optimal therapeutic efficacy.


Subject(s)
Ecosystem , Neoplasms , Humans , Matrix Metalloproteinase 13/pharmacology , Myelopoiesis , Hematopoietic Stem Cells , Neoplasms/pathology , Immunosuppression Therapy , High-Temperature Requirement A Serine Peptidase 1/pharmacology
7.
Cancer Discov ; 13(2): 474-495, 2023 02 06.
Article in English | MEDLINE | ID: mdl-36287038

ABSTRACT

The bone microenvironment is dynamic and undergoes remodeling in normal and pathologic conditions. Whether such remodeling affects disseminated tumor cells (DTC) and bone metastasis remains poorly understood. Here, we demonstrated that pathologic fractures increase metastatic colonization around the injury. NG2+ cells are a common participant in bone metastasis initiation and bone remodeling in both homeostatic and fractured conditions. NG2+ bone mesenchymal stem/stromal cells (BMSC) often colocalize with DTCs in the perivascular niche. Both DTCs and NG2+ BMSCs are recruited to remodeling sites. Ablation of NG2+ lineage impaired bone remodeling and concurrently diminished metastatic colonization. In cocultures, NG2+ BMSCs, especially when undergoing osteodifferentiation, enhanced cancer cell proliferation and migration. Knockout of N-cadherin in NG2+ cells abolished these effects in vitro and phenocopied NG2+ lineage depletion in vivo. These findings uncover dual roles of NG2+ cells in metastasis and remodeling and indicate that osteodifferentiation of BMSCs promotes metastasis initiation via N-cadherin-mediated cell-cell interaction. SIGNIFICANCE: The bone colonization of cancer cells occurs in an environment that undergoes constant remodeling. Our study provides mechanistic insights into how bone homeostasis and pathologic repair lead to the outgrowth of disseminated cancer cells, thereby opening new directions for further etiologic and epidemiologic studies of tumor recurrences. This article is highlighted in the In This Issue feature, p. 247.


Subject(s)
Bone Neoplasms , Osteogenesis , Humans , Osteogenesis/genetics , Neoplasm Recurrence, Local , Bone Neoplasms/genetics , Cell Differentiation , Bone Remodeling , Cadherins/genetics , Tumor Microenvironment
8.
Front Hum Neurosci ; 16: 950893, 2022.
Article in English | MEDLINE | ID: mdl-36262959

ABSTRACT

Physical activity is critical for maintaining cognitive and brain health. Previous studies have indicated that the effect of physical activity on cognitive and brain function varies between individuals. The present study aimed to examine whether mind wandering modulated the relations between physical activity and resting-state hippocampal functional connectivity. A total of 99 healthy adults participated in neuroimaging data collection as well as reported their physical activity in the past week and their propensity to mind wandering during typical activities. The results indicated that mind wandering was negatively related to the resting-state functional connectivity between hippocampus and right inferior occipital gyrus. Additionally, for participants with higher level of mind wandering, physical activity was negatively related to hippocampal connectivity at left precuneus and right precentral gyrus. In contrast, such relations were positive at right medial frontal gyrus and bilateral precentral gyrus for participants with lower level of mind wandering. Altogether, these findings indicated that the relations between physical activity and hippocampal functional connectivity vary as a function of mind wandering level, suggesting that individual differences are important to consider when we aim to maintain or improve cognitive and brain health through increasing physical activity.

9.
Neuroscience ; 473: 90-101, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34450213

ABSTRACT

As a high-order cognitive ability, creativity is viewed as the result of complex interplay between a set of mental processes. However, previous studies have mainly tested one-to-one mutual relations between creativity and other cognitive abilities. It lacks studies to examine whether creativity is related to the interaction between cognitive systems. The current study aimed to fill this gap by testing the relations of creativity to the interactions between cognitive control and episodic memory systems using both behavioral and neuroimaging methods. The Alternative Uses Task was used to measure the divergent component of creativity. A computer-based behavioral task was used to measure cognitive control, episodic memory, and their interactions. Additionally, the interactions between cognitive systems were characterized by computing the resting-state functional connectivity between hippocampus and prefrontal regions, which are the neural substrates for episodic memory and cognitive control, respectively. By analyzing these behavioral and neuroimaging data, the behavioral results indicated that creativity was significantly related to the effect of cognitive control induced by switching tasks or proactive cues on subsequent memories of items or sources. Additionally, neuroimaging results showed that creativity was significantly related to the connectivity from hippocampus to both left superior frontal gyrus and middle frontal gyrus. Such relations were also differentiated between anterior and posterior hippocampus. Altogether, these findings suggest that creativity is related to interactions between cognitive control and episodic memory, supporting the claim that creativity is the result of complex interplay between high-order cognitive functions.


Subject(s)
Brain Mapping , Memory, Episodic , Brain/diagnostic imaging , Cognition , Creativity , Magnetic Resonance Imaging
10.
Cell ; 184(9): 2471-2486.e20, 2021 04 29.
Article in English | MEDLINE | ID: mdl-33878291

ABSTRACT

Metastasis has been considered as the terminal step of tumor progression. However, recent genomic studies suggest that many metastases are initiated by further spread of other metastases. Nevertheless, the corresponding pre-clinical models are lacking, and underlying mechanisms are elusive. Using several approaches, including parabiosis and an evolving barcode system, we demonstrated that the bone microenvironment facilitates breast and prostate cancer cells to further metastasize and establish multi-organ secondary metastases. We uncovered that this metastasis-promoting effect is driven by epigenetic reprogramming that confers stem cell-like properties on cancer cells disseminated from bone lesions. Furthermore, we discovered that enhanced EZH2 activity mediates the increased stemness and metastasis capacity. The same findings also apply to single cell-derived populations, indicating mechanisms distinct from clonal selection. Taken together, our work revealed an unappreciated role of the bone microenvironment in metastasis evolution and elucidated an epigenomic reprogramming process driving terminal-stage, multi-organ metastases.


Subject(s)
Bone Neoplasms/secondary , Breast Neoplasms/pathology , Neoplasm Metastasis , Prostatic Neoplasms/pathology , Tumor Microenvironment , Animals , Apoptosis , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Bone Neoplasms/genetics , Bone Neoplasms/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Proliferation , Disease Progression , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, Nude , Mice, SCID , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
11.
Sci Adv ; 7(11)2021 03.
Article in English | MEDLINE | ID: mdl-33692103

ABSTRACT

How metabolic status controls the fates of different types of leukemia cells remains elusive. Using a SoNar-transgenic mouse line, we demonstrated that B cell acute lymphoblastic leukemia (B-ALL) cells had a preference in using oxidative phosphorylation. B-ALL cells with a low SoNar ratio (SoNar-low) had enhanced mitochondrial respiration capacity, mainly resided in the vascular niche, and were enriched with more functional leukemia-initiating cells than that of SoNar-high cells in a murine B-ALL model. The SoNar-low cells were more resistant to cytosine arabinoside (Ara-C) treatment. cyclic adenosine 3',5'-monophosphate response element-binding protein transactivated pyruvate dehydrogenase complex component X and cytidine deaminase to maintain the oxidative phosphorylation level and Ara-C-induced resistance. SoNar-low human primary B-ALL cells also had a preference for oxidative phosphorylation. Suppressing oxidative phosphorylation with several drugs sufficiently attenuated Ara-C-induced resistance. Our study provides a unique angle for understanding the potential connections between metabolism and B-ALL cell fates.


Subject(s)
Oxidative Phosphorylation , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Animals , Cytarabine/metabolism , Cytarabine/pharmacology , Cytidine Deaminase/genetics , Cytidine Deaminase/metabolism , Mice , Mice, Transgenic
12.
J Clin Invest ; 131(6)2021 03 15.
Article in English | MEDLINE | ID: mdl-33720051

ABSTRACT

Many solid cancers metastasize to the bone and bone marrow (BM). This process may occur even before the diagnosis of primary tumors, as evidenced by the discovery of disseminated tumor cells (DTCs) in patients without occult malignancies. The cellular fates and metastatic progression of DTCs are determined by complicated interactions between cancer cells and BM niches. Not surprisingly, these niches also play important roles in normal biology, including homeostasis and turnover of skeletal and hematopoiesis systems. In this Review, we summarize recent findings on functions of BM niches in bone metastasis (BoMet), particularly during the early stage of colonization. In light of the rich knowledge of hematopoiesis and osteogenesis, we highlight how DTCs may progress into overt BoMet by taking advantage of niche cells and their activities in tissue turnover, especially those related to immunomodulation and bone repair.


Subject(s)
Bone Neoplasms/secondary , Bone Marrow Neoplasms/immunology , Bone Marrow Neoplasms/pathology , Bone Marrow Neoplasms/secondary , Bone Neoplasms/immunology , Bone Neoplasms/pathology , Bone Remodeling/immunology , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Disease Progression , Female , Hematopoietic Stem Cells/immunology , Hematopoietic Stem Cells/pathology , Humans , Immune Privilege , Immune Tolerance , Male , Models, Biological , Myeloid Cells/immunology , Neoplasm Metastasis/immunology , Neoplasm Metastasis/pathology , Neoplasm Metastasis/therapy , Neoplastic Stem Cells/immunology , Neoplastic Stem Cells/pathology , Prostatic Neoplasms/immunology , Prostatic Neoplasms/pathology , Stem Cell Niche/immunology , T-Lymphocytes, Regulatory/immunology , Tumor Microenvironment/immunology
13.
J Clin Invest ; 131(1)2021 01 04.
Article in English | MEDLINE | ID: mdl-33108353

ABSTRACT

Small extracellular vesicles (SEVs) are functional messengers of certain cellular niches that permit noncontact cell communications. Whether niche-specific SEVs fulfill this role in cancer is unclear. Here, we used 7 cell type-specific mouse Cre lines to conditionally knock out Vps33b in Cdh5+ or Tie2+ endothelial cells (ECs), Lepr+ BM perivascular cells, Osx+ osteoprogenitor cells, Pf4+ megakaryocytes, and Tcf21+ spleen stromal cells. We then examined the effects of reduced SEV secretion on progression of MLL-AF9-induced acute myeloid leukemia (AML), as well as normal hematopoiesis. Blocking SEV secretion from ECs, but not perivascular cells, megakaryocytes, or spleen stromal cells, markedly delayed the leukemia progression. Notably, reducing SEV production from ECs had no effect on normal hematopoiesis. Protein analysis showed that EC-derived SEVs contained a high level of ANGPTL2, which accelerated leukemia progression via binding to the LILRB2 receptor. Moreover, ANGPTL2-SEVs released from ECs were governed by VPS33B. Importantly, ANGPTL2-SEVs were also required for primary human AML cell maintenance. These findings demonstrate a role of niche-specific SEVs in cancer development and suggest targeting of ANGPTL2-SEVs from ECs as a potential strategy to interfere with certain types of AML.


Subject(s)
Angiopoietin-like Proteins/metabolism , Endothelial Cells/metabolism , Extracellular Vesicles/metabolism , Leukemia, Myeloid, Acute/metabolism , Neoplasm Proteins/metabolism , Angiopoietin-Like Protein 2 , Angiopoietin-like Proteins/genetics , Animals , Endothelial Cells/pathology , Extracellular Vesicles/genetics , Extracellular Vesicles/pathology , Gene Knockout Techniques , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Mice , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Neoplasm Proteins/genetics
14.
Blood ; 136(5): 553-571, 2020 07 30.
Article in English | MEDLINE | ID: mdl-32396938

ABSTRACT

The connections between energy metabolism and stemness of hematopoietic stem cells (HSCs) at different developmental stages remain largely unknown. We generated a transgenic mouse line for the genetically encoded NADH/NAD+ sensor (SoNar) and demonstrate that there are 3 distinct fetal liver hematopoietic cell populations according to the ratios of SoNar fluorescence. SoNar-low cells had an enhanced level of mitochondrial respiration but a glycolytic level similar to that of SoNar-high cells. Interestingly, 10% of SoNar-low cells were enriched for 65% of total immunophenotypic fetal liver HSCs (FL-HSCs) and contained approximately fivefold more functional HSCs than their SoNar-high counterparts. SoNar was able to monitor sensitively the dynamic changes of energy metabolism in HSCs both in vitro and in vivo. Mechanistically, STAT3 transactivated MDH1 to sustain the malate-aspartate NADH shuttle activity and HSC self-renewal and differentiation. We reveal an unexpected metabolic program of FL-HSCs and provide a powerful genetic tool for metabolic studies of HSCs or other types of stem cells.


Subject(s)
Hematopoietic Stem Cells/metabolism , Metabolomics/methods , Optical Imaging/methods , Animals , Aspartic Acid/metabolism , Fetus , Hematopoietic Stem Cells/cytology , Liver/cytology , Malates/metabolism , Mice , Mice, Transgenic , NAD/analysis
15.
Adv Exp Med Biol ; 1143: 59-74, 2019.
Article in English | MEDLINE | ID: mdl-31338815

ABSTRACT

One of the bottlenecks of the treatments for malignant hematopoietic disorders is the unavailability of sufficient amount of hematopoietic stem cells (HSCs). HSCs are considered to be originated from the aorta-gonad-mesonephros and gradually migrates into fetal liver and resides in a unique microenvironment/niche of bone marrow. Although many intrinsic and extrinsic factors (niche components) are reported to be involved in the origination, maturation, migration, and localization of HSCs at different developmental stages, the detailed molecular mechanisms still remain largely unknown. Previous studies have shown that intrinsic metabolic networks may be critical for the cell fate determinations of HSCs. For example, HSCs mainly utilize glycolysis as the main energy sources; oxidative phosphorylation is required for the homeostasis of HSCs; lipid or amino acid metabolisms may also sustain HSC stemness. Mechanistically, lots of regulatory pathways, such as MEIS1/HIF1A and PI3K/AKT/mTOR signaling, are found to fine-tune the different nutrient metabolisms and cell fate commitments of HSCs. However, more efforts are required for the optimization and establishment of precise metabolic techniques specific for the HSCs with relatively rare cell frequency and understanding of the basic metabolic properties and their underlying regulatory mechanisms of different nutrients (such as glucose) during the different developmental stages of HSCs.


Subject(s)
Cell Differentiation , Hematopoietic Stem Cells , Signal Transduction , Bone Marrow/metabolism , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Humans
16.
Cell Metab ; 29(4): 950-965.e6, 2019 04 02.
Article in English | MEDLINE | ID: mdl-30581117

ABSTRACT

The metabolic properties of leukemia-initiating cells (LICs) in distinct bone marrow niches and their relationships to cell-fate determinations remain largely unknown. Using a metabolic imaging system with a highly responsive genetically encoded metabolic sensor, SoNar, we reveal that SoNar-high cells are more glycolytic, enriched for higher LIC frequency, and develop leukemia much faster than SoNar-low counterparts in an MLL-AF9-induced murine acute myeloid leukemia model. SoNar-high cells mainly home to and locate in the hypoxic endosteal niche and maintain their activities through efficient symmetric division. SoNar can indicate the dynamics of metabolic changes of LICs in the endosteal niche. SoNar-high human leukemia cells or primary samples have enhanced clonogenic capacities in vitro or leukemogenesis in vivo. PDK2 fine-tunes glycolysis, homing, and symmetric division of LICs. These findings provide a unique angle for the study of metabolisms in stem cells, and may lead to development of novel strategies for cancer treatment.


Subject(s)
Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Stem Cell Niche , Animals , Cell Division , Disease Models, Animal , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, SCID , Mice, Transgenic
17.
EMBO J ; 37(17)2018 09 03.
Article in English | MEDLINE | ID: mdl-30037826

ABSTRACT

The number and self-renewal capacity of hematopoietic stem cells (HSCs) are tightly regulated at different developmental stages. Many pathways have been implicated in regulating HSC development in cell autonomous manners; however, it remains unclear how HSCs sense and integrate developmental cues. In this study, we identified an extrinsic mechanism by which HSC number and functions are regulated during mouse puberty. We found that the HSC number in postnatal bone marrow reached homeostasis at 4 weeks after birth. Luteinizing hormone, but not downstream sex hormones, was involved in regulating HSC homeostasis during this period. Expression of luteinizing hormone receptor (Lhcgr) is highly restricted in HSCs and multipotent progenitor cells in the hematopoietic hierarchy. When Lhcgr was deleted, HSCs continued to expand even after 4 weeks after birth, leading to abnormally elevated hematopoiesis and leukocytosis. In a murine acute myeloid leukemia model, leukemia development was significantly accelerated upon Lhcgr deletion. Together, our work reveals an extrinsic counting mechanism that restricts HSC expansion during development and is physiologically important for maintaining normal hematopoiesis and inhibiting leukemogenesis.


Subject(s)
Hematopoiesis , Hematopoietic Stem Cells/metabolism , Luteinizing Hormone/metabolism , Receptors, LH/metabolism , Sexual Maturation , Signal Transduction , Animals , Hematopoietic Stem Cells/pathology , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Luteinizing Hormone/genetics , Mice , Mice, Knockout , Neoplasms, Experimental/genetics , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Receptors, LH/genetics
18.
Cell Rep ; 23(5): 1461-1475, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29719258

ABSTRACT

In addition to acting as building blocks for biosynthesis, amino acids might serve as signaling regulators in various physiological and pathological processes. However, it remains unknown whether amino acid levels affect the activities of hematopoietic stem cells (HSCs). By using a genetically encoded fluorescent sensor of the intracellular levels of branched-chain amino acids (BCAAs), we could monitor the dynamics of BCAA metabolism in HSCs. A mitochondrial-targeted 2C-type Ser/Thr protein phosphatase (PPM1K) promotes the catabolism of BCAAs to maintain MEIS1 and p21 levels by decreasing the ubiquitination-mediated degradation controlled by the E3 ubiquitin ligase CDC20. PPM1K deficiency led to a notable decrease in MEIS1/p21 signaling to reduce the glycolysis and quiescence of HSCs, followed by a severe impairment in repopulation activities. Moreover, the deletion of Ppm1k dramatically extended survival in a murine leukemia model. These findings will enhance the current understanding of nutrient signaling in metabolism and function of stem cells.


Subject(s)
Cdc20 Proteins/metabolism , Cell Transformation, Neoplastic/metabolism , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Hematopoiesis , Hematopoietic Stem Cells/metabolism , Leukemia/metabolism , Myeloid Ecotropic Viral Integration Site 1 Protein/metabolism , Neoplasm Proteins/metabolism , Protein Phosphatase 2C/metabolism , Ubiquitination , Animals , Cdc20 Proteins/genetics , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/pathology , Hematopoietic Stem Cells/pathology , Leukemia/genetics , Leukemia/pathology , Mice , Mice, Knockout , Myeloid Ecotropic Viral Integration Site 1 Protein/genetics , Neoplasm Proteins/genetics , Protein Phosphatase 2C/genetics , Signal Transduction/genetics
19.
J Clin Invest ; 128(5): 1737-1751, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29584620

ABSTRACT

Leukemia-initiating cells (LICs) are responsible for the initiation, development, and relapse of leukemia. The identification of novel therapeutic LIC targets is critical to curing leukemia. In this report, we reveal that junctional adhesion molecule 3 (JAM3) is highly enriched in both mouse and human LICs. Leukemogenesis is almost completely abrogated upon Jam3 deletion during serial transplantations in an MLL-AF9-induced murine acute myeloid leukemia model. In contrast, Jam3 deletion does not affect the functions of mouse hematopoietic stem cells. Moreover, knockdown of JAM3 leads to a dramatic decrease in the proliferation of both human leukemia cell lines and primary LICs. JAM3 directly associates with LRP5 to activate the downstream PDK1/AKT pathway, followed by the downregulation of GSK3ß and activation of ß-catenin/CCND1 signaling, to maintain the self-renewal ability and cell cycle entry of LICs. Thus, JAM3 may serve as a functional LIC marker and play an important role in the maintenance of LIC stemness through unexpected LRP5/PDK1/AKT/GSK3ß/ß-catenin/CCND1 signaling pathways but not via its canonical role in cell junctions and migration. JAM3 may be an ideal therapeutic target for the eradication of LICs without influencing normal hematopoiesis.


Subject(s)
Cell Adhesion Molecules/metabolism , Cyclin D1/metabolism , Hematopoietic Stem Cells/metabolism , Immunoglobulins/metabolism , Leukemia, Myeloid, Acute/metabolism , Low Density Lipoprotein Receptor-Related Protein-5/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , beta Catenin/metabolism , Animals , Cell Adhesion Molecules/genetics , Cyclin D1/genetics , Hematopoiesis/genetics , Hematopoietic Stem Cells/pathology , Immunoglobulins/genetics , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Low Density Lipoprotein Receptor-Related Protein-5/genetics , Mice , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Proto-Oncogene Proteins c-akt/genetics , beta Catenin/genetics
20.
J Clin Invest ; 126(12): 4537-4553, 2016 12 01.
Article in English | MEDLINE | ID: mdl-27797340

ABSTRACT

Certain secretory proteins are known to be critical for maintaining the stemness of stem cells through autocrine signaling. However, the processes underlying the biogenesis, maturation, and secretion of these proteins remain largely unknown. Here we demonstrate that many secretory proteins produced by hematopoietic stem cells (HSCs) undergo exosomal maturation and release that is controlled by vacuolar protein sorting protein 33b (VPS33B). Deletion of VPS33B in either mouse or human HSCs resulted in impaired exosome maturation and secretion as well as loss of stemness. Additionally, VPS33B deficiency led to a dramatic delay in leukemogenesis. Exosomes purified from either conditioned medium or human plasma could partially rescue the defects of HSCs and leukemia-initiating cells (LICs). VPS33B co-existed in exosomes with GDI2, VPS16B, FLOT1, and other known exosome markers. Mechanistically, VPS33B interacted with the GDI2/RAB11A/RAB27A pathway to regulate the trafficking of secretory proteins as exosomes. These findings reveal an essential role for VPS33B in exosome pathways in HSCs and LICs. Moreover, they shed light on the understanding of vesicle trafficking in other stem cells and on the development of improved strategies for cancer treatment.


Subject(s)
Autocrine Communication , Cell Transformation, Neoplastic/metabolism , Exosomes/metabolism , Hematopoiesis , Leukemia/metabolism , Signal Transduction , Vesicular Transport Proteins/metabolism , Animals , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/pathology , Exosomes/genetics , Guanine Nucleotide Dissociation Inhibitors/genetics , Guanine Nucleotide Dissociation Inhibitors/metabolism , HEK293 Cells , Humans , Leukemia/genetics , Leukemia/pathology , Mice , Mice, Knockout , Protein Transport/genetics , Vesicular Transport Proteins/genetics , rab GTP-Binding Proteins/genetics , rab GTP-Binding Proteins/metabolism , rab27 GTP-Binding Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...