Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; : e2308451, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38059738

ABSTRACT

Developing pure inorganic materials capable of efficiently co-removing radioactive I2 and CH3 I has always been a major challenge. Bismuth-based materials (BBMs) have garnered considerable attention due to their impressive I2 sorption capacity at high-temperature and cost-effectiveness. However, solely relying on bismuth components falls short in effectively removing CH3 I and has not been systematically studied. Herein, a series of hollow mesoporous core-shell bifunctional materials with adjustable shell thickness and Si/Al ratio by using silica-coated Bi2 O3 as a hard template and through simple alkaline-etching and CTAB-assisted surface coassembly methods (Bi@Al/SiO2 ) is successfully synthesized. By meticulously controlling the thickness of the shell layer and precisely tuning of the Si/Al ratio composition, the synthesis of BBMs capable of co-removing radioactive I2 and CH3 I for the first time, demonstrating remarkable sorption capacities of 533.1 and 421.5 mg g-1 , respectively is achieved. Both experimental and theoretical calculations indicate that the incorporation of acid sites within the shell layer is a key factor in achieving effective CH3 I sorption. This innovative structural design of sorbent enables exceptional co-removal capabilities for both I2 and CH3 I. Furthermore, the core-shell structure enhances the retention of captured iodine within the sorbents, which may further prevent potential leakage.

2.
Front Chem ; 11: 1122484, 2023.
Article in English | MEDLINE | ID: mdl-36762197

ABSTRACT

Nowadays, the demand for nuclear power is continue increasing due to its safety, cleanliness, and high economic benefits. Radioactive iodine from nuclear accidents and nuclear waste treatment processes poses a threat to humans and the environment. Therefore, the capture and storage of radioactive iodine are vital. Bismuth-based (Bi-based) materials have drawn much attention as low-toxicity and economical materials for removing and immobilizing iodine. Recent advances in adsorption and immobilization of vapor iodine by the Bi-based materials are discussed in this review, in addition with the removal of iodine from solution. It points out the neglected areas in this research topic and provides suggestions for further development and application of Bi-based materials in the removal of radioactive iodine.

3.
Chemistry ; 27(41): 10717-10730, 2021 Jul 21.
Article in English | MEDLINE | ID: mdl-34002918

ABSTRACT

Two new phosphine oxide-functionalized 1,10-phenanthroline ligands, tetradentate 2,9-bis(butylphenylphosphine oxide)-1,10-phenanthroline (BuPh-BPPhen, L1 ) and tridentate 2-(butylphenylphosphine oxide)-1,10-phenanthroline (BuPh-MPPhen, L2 ), were synthesized and studied comparatively for their coordination with trivalent actinides and lanthanides. The complexation mechanisms of these two ligands toward trivalent f-block elements were thoroughly elucidated by NMR spectroscopy, UV/vis spectrophotometry, fluorescence spectrometry, single-crystal X-ray diffraction, solvent extraction, and theoretical calculation methods. NMR titration results demonstrated that 1 : 1 and 1 : 2 (metal to ligand) lanthanides complexes formed for L1 , whereas 1 : 1, 1 : 2 and 1 : 3 lanthanide complexes formed for L2 in methanol. The formation of these species was validated by fluorescence spectrometry, and the corresponding stability constants for the complexes of NdIII with L1 and L2 were determined by using UV/vis spectrophotometry. Structures of the 10-coordinated 1 : 1-type complexes of EuL1 (NO3 )3 and [EuL2 (NO3 )3 (H2 O)] Et2 O in the solid state were characterized by X-ray crystallography. In solvent-extraction experiments, L1 exhibited extremely strong extraction ability for both AmIII and EuIII , whereas L2 showed nearly no extraction toward AmIII or EuIII due to its high hydrophilicity. Finally, the structures and bonding natures of the complex species formed between AmIII /EuIII and L1 /L2 were analyzed in DFT calculations.

4.
Inorg Chem ; 59(23): 17453-17463, 2020 Dec 07.
Article in English | MEDLINE | ID: mdl-33216540

ABSTRACT

Soft-hard-donor-combined ligands are a type of promising extractant for actinide and lanthanide separation. In this work, the effects of counteranions (Cl-, NO3-, and ClO4-) on the extraction and complexation behaviors of a recently reported tetradentate phenanthroline-derived phosphonate (POPhen) ligand toward lanthanides were thoroughly investigated using solvent extraction, NMR titration, UV-vis titration, and single-crystal X-ray diffraction measurements. It is found that C4-POPhen showed excellent extraction and selectivity toward heavy lanthanides [Lu(III)] compared to light lanthanides, particularly with the counterion of ClO4- and at low acidity. NMR titration studies demonstrated that both 1:1 and 1:2 Lu(III)/C4-POPhen complexes were formed in a CD3OD solution with all three counteranions and the 1:2 species was easier to form in a complexation of C4-POPhen with Lu(ClO4)3 under the same conditions. Furthermore, the stability constants of Nd(III) complexation with C4-POPhen in the counteranions of Cl-, NO3-, and ClO4- systems were determined through UV-vis titration, and a much larger value of log ß of complexes was found in the ClO4- system, which was in good agreement with the results of solvent extraction. In addition, the structures of C2-POPhen complexation with Ln(NO3)3/Ln(ClO4)3 in the solid state were clearly unraveled by the single-crystal X-ray diffraction technique. This work demonstrated that the solvent extraction and complexation mechanisms of POPhen ligands with Ln(III) were significantly affected by the counteranions from both the solution and solid-state aspects, which might shed light on the lanthanide/actinide separation.

SELECTION OF CITATIONS
SEARCH DETAIL
...