Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
Brief Bioinform ; 23(2)2022 03 10.
Article in English | MEDLINE | ID: mdl-35043153

ABSTRACT

Genomic epidemiology is important to study the COVID-19 pandemic, and more than two million severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genomic sequences were deposited into public databases. However, the exponential increase of sequences invokes unprecedented bioinformatic challenges. Here, we present the Coronavirus GenBrowser (CGB) based on a highly efficient analysis framework and a node-picking rendering strategy. In total, 1,002,739 high-quality genomic sequences with the transmission-related metadata were analyzed and visualized. The size of the core data file is only 12.20 MB, highly efficient for clean data sharing. Quick visualization modules and rich interactive operations are provided to explore the annotated SARS-CoV-2 evolutionary tree. CGB binary nomenclature is proposed to name each internal lineage. The pre-analyzed data can be filtered out according to the user-defined criteria to explore the transmission of SARS-CoV-2. Different evolutionary analyses can also be easily performed, such as the detection of accelerated evolution and ongoing positive selection. Moreover, the 75 genomic spots conserved in SARS-CoV-2 but non-conserved in other coronaviruses were identified, which may indicate the functional elements specifically important for SARS-CoV-2. The CGB was written in Java and JavaScript. It not only enables users who have no programming skills to analyze millions of genomic sequences, but also offers a panoramic vision of the transmission and evolution of SARS-CoV-2.


Subject(s)
COVID-19/epidemiology , COVID-19/virology , Public Health Surveillance/methods , SARS-CoV-2/genetics , Software , Web Browser , Computational Biology/methods , DNA Mutational Analysis , Databases, Genetic , Genome, Viral , Genomics , Humans , Molecular Epidemiology/methods , Molecular Sequence Annotation , Mutation
3.
Natl Sci Rev ; 7(4): 798-814, 2020 Apr.
Article in English | MEDLINE | ID: mdl-34692098

ABSTRACT

Pangolins are among the most critically endangered animals due to heavy poaching and worldwide trafficking. However, their demographic histories and the genomic consequences of their recent population declines remain unknown. We generated high-quality de novo reference genomes for critically endangered Malayan (Manis javanica, MJ) and Chinese (M. pentadactyla, MP) pangolins and re-sequencing population genomic data from 74 MJs and 23 MPs. We recovered the population identities of illegally traded pangolins and previously unrecognized genetic populations that should be protected as evolutionarily distinct conservation units. Demographic reconstruction suggested environmental changes have resulted in a population size fluctuation of pangolins. Additionally, recent population size declines due to human activities have resulted in an increase in inbreeding and genetic load. Deleterious mutations were enriched in genes related to cancer/diseases and cholesterol homeostasis, which may have increased their susceptibility to diseases and decreased their survival potential to adapt to environmental changes and high-cholesterol diets. This comprehensive study provides not only high-quality pangolin reference genomes, but also valuable information concerning the driving factors of long-term population size fluctuations and the genomic impact of recent population size declines due to human activities, which is essential for pangolin conservation management and global action planning.

4.
Natl Sci Rev ; 7(6): 952-963, 2020 Jun.
Article in English | MEDLINE | ID: mdl-34692117

ABSTRACT

Abundant and diverse domestic mammals living on the Tibetan Plateau provide useful materials for investigating adaptive evolution and genetic convergence. Here, we used 327 genomes from horses, sheep, goats, cattle, pigs and dogs living at both high and low altitudes, including 73 genomes generated for this study, to disentangle the genetic mechanisms underlying local adaptation of domestic mammals. Although molecular convergence is comparatively rare at the DNA sequence level, we found convergent signature of positive selection at the gene level, particularly the EPAS1 gene in these Tibetan domestic mammals. We also reported a potential function in response to hypoxia for the gene C10orf67, which underwent positive selection in three of the domestic mammals. Our data provide an insight into adaptive evolution of high-altitude domestic mammals, and should facilitate the search for additional novel genes involved in the hypoxia response pathway.

5.
Nature ; 551(7679): 198-203, 2017 11 08.
Article in English | MEDLINE | ID: mdl-29120414

ABSTRACT

The rate of behavioural decline in the ageing population is remarkably variable among individuals. Despite the considerable interest in studying natural variation in ageing rate to identify factors that control healthy ageing, no such factor has yet been found. Here we report a genetic basis for variation in ageing rates in Caenorhabditis elegans. We find that C. elegans isolates show diverse lifespan and age-related declines in virility, pharyngeal pumping, and locomotion. DNA polymorphisms in a novel peptide-coding gene, named regulatory-gene-for-behavioural-ageing-1 (rgba-1), and the neuropeptide receptor gene npr-28 influence the rate of age-related decline of worm mating behaviour; these two genes might have been subjected to recent selective sweeps. Glia-derived RGBA-1 activates NPR-28 signalling, which acts in serotonergic and dopaminergic neurons to accelerate behavioural deterioration. This signalling involves the SIR-2.1-dependent activation of the mitochondrial unfolded protein response, a pathway that modulates ageing. Thus, natural variation in neuropeptide-mediated glia-neuron signalling modulates the rate of ageing in C. elegans.


Subject(s)
Aging/genetics , Aging/physiology , Caenorhabditis elegans/genetics , Caenorhabditis elegans/physiology , Genetic Variation , Neuroglia/metabolism , Neurons/metabolism , Signal Transduction/genetics , Alleles , Animals , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Dopaminergic Neurons/metabolism , Female , Genetics, Population , Locomotion/genetics , Locomotion/physiology , Longevity/genetics , Longevity/physiology , Male , Pharynx/physiology , Polymorphism, Single Nucleotide/genetics , Receptors, G-Protein-Coupled/metabolism , Serotonergic Neurons/metabolism , Sexual Behavior, Animal/physiology , Sirtuins/metabolism , Unfolded Protein Response/genetics , Unfolded Protein Response/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...