Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Insects ; 15(7)2024 Jun 22.
Article in English | MEDLINE | ID: mdl-39057199

ABSTRACT

Dengue is an important mosquito-borne disease in Sri Lanka. The Sterile Insect Technique (SIT) is an environment-friendly and novel method that can suppress dengue vector mosquitoes in Sri Lanka. This study aimed to evaluate the field performance of sterile males and the density of wild male Aedes albopictus (Skuse) using a Mark-Release-Recapture (MRR) assay. Laboratory-colonized male pupae were exposed to 50 Gy gamma using a Co60 source. Sterile males (approx. 10,000) marked with fluorescent dust were released weekly for 4 consecutive weeks (January-February 2021) in a geographically isolated 30 ha site in Gampaha. Results show sterile males could disperse up to 543.8 m with a mean distance of 255.1 ± 44.6 m and survive up to 6 days with a mean life expectancy of 3.55 ± 2.32 days. A high field mating competitiveness of sterile males based on a Fried value of 0.47 ± 0.007 and significant induced sterility in the wild eggs in the second generation were found. The mean wild male mosquito population density was 163 males/ha. The data generated will be useful for designing future trials in Sri Lanka and other countries with similar situations.

2.
PLoS One ; 19(3): e0295287, 2024.
Article in English | MEDLINE | ID: mdl-38489285

ABSTRACT

Leptospirosis is the most widespread zoonosis in the world. The disease is more prevalent in tropical regions where the majority of developing countries are located. Leptospirosis is considered a protean manifestation zoonosis with severity of the disease ranging from a mild febrile illness to a severe and life-threatening illness. Clinical symptoms of leptospirosis overlap with other tropical febrile illnesses. Early, rapid, and definitive diagnosis is important for effective patient management. Since Polymerase Chain Reaction (PCR)-based assays are not readily available in most clinical settings, there is a need for an affordable, simple, and rapid diagnostic test. Quantitative PCR (qPCR) and Recombinase Polymerase Amplification (RPA) were implemented at the Faculty of Medicine, University of Kelaniya, and a prospective study to evaluate RPA for diagnosis of acute phase of leptospirosis was conducted. Results indicate that RPA and qPCR were positive in 81% (98/121) of the total positive and acute clinical samples. Of the 81 positive MAT confirmed patients 60 (74%) and 53 (65%) were positive with qPCR and RPA respectively. Retrospective evaluation revealed a high diagnostic accuracy (sensitivity-70% and specificity-87%) of RPA compared to MAT as the reference gold standard. Results further suggest that there is no significant difference between the two assays, qPCR and RPA-SwiftX (P = 0.40). Laboratory procedures for the extraction and detection by qPCR in the laboratory have been optimized to obtain results within 6 hours. However, the RPA-SwiftX method under field conditions took 35 minutes. The RPA-SwiftX method could replace the qPCR which shows similar sensitivity and specificity. Therefore, RPA established under the current study presents a powerful tool for the early and rapid diagnosis of leptospirosis at point-of-care.


Subject(s)
Leptospira , Leptospirosis , Animals , Humans , Leptospira/genetics , Recombinases , Retrospective Studies , Prospective Studies , Sri Lanka , Leptospirosis/diagnosis , Polymerase Chain Reaction , Nucleotidyltransferases , Zoonoses , Sensitivity and Specificity , Real-Time Polymerase Chain Reaction/methods , Nucleic Acid Amplification Techniques/methods
3.
J Infect Public Health ; 16(9): 1435-1442, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37517370

ABSTRACT

BACKGROUND: Zika Virus (ZIKV) is a re-emerging, arthropod-borne flavivirus transmitted by Aedes mosquitoes (Ae. aegypti and Ae. albopictus). The coexistence of dengue virus (DENV) and ZIKV concurrently has been associated with a wide array of neurological complications, which may influence the clinical outcomes of infections. Sri Lanka witnessed a severe dengue epidemic in 2017, characterized by extraordinary and severe disease manifestations with considerable morbidity. Therefore, this study assessed the potential occurrence of ZIKV infection during DENV outbreak in Sri Lanka from 2017 to 2019, which could bear substantial implications for public health. METHODS: Five hundred ninety-five serum samples were procured from individuals suspected of dengue and admitted to Kandy National Hospital between 2017 and 2018 and the Negombo District General Hospital between 2018 and 2019. These samples underwent quantitative real-time RT-PCR (qRT-PCR) to identify the presence of the ZIKV gene, while enzyme-linked immunosorbent assay was employed to detect ZIKV-specific IgM and IgG antibodies. Focus reduction neutralization tests were subsequently conducted to confirm ZIKV infection. RESULTS: Among the 595 serum samples, 6 (1.0%) tested positive for ZIKV using qRT-PCR. Anti-ZIKV IgM and IgG were identified in 18.0% and 38.6% patients. Sixty-six (11.0%) samples demonstrated the presence of anti-ZIKV IgM and IgG. Within ZIKV IgM-positive samples, 2.2% exhibited neutralizing antibodies against ZIKV. Through the implementation of qRT-PCR, ZIKV IgM detection, and neutralization testing, 2% and 3.7% cases of ZIKV infections were confirmed in the Kandy and Negombo regions, respectively. CONCLUSION: This study is the inaugural endeavor to substantiate the existence of ZIKV infection in Sri Lanka utilizing molecular and serological analysis. The findings of this investigation imply that ZIKV was circulating throughout the 2017-2019 DENV outbreak. These results underscore the necessity for improved preparedness for future outbreaks, fortifying governmental policies on public health, and establishing effective early warning systems regarding the emergence of these viruses.


Subject(s)
Aedes , Dengue Virus , Dengue , Zika Virus Infection , Zika Virus , Animals , Humans , Zika Virus Infection/diagnosis , Zika Virus Infection/epidemiology , Sri Lanka/epidemiology , Dengue/diagnosis , Serologic Tests/methods , Antibodies, Viral , Immunoglobulin G , Immunoglobulin M
4.
PLoS One ; 17(4): e0265244, 2022.
Article in English | MEDLINE | ID: mdl-35377897

ABSTRACT

BACKGROUND: The Sterile Insect Technique (SIT) is presently being tested to control dengue in several countries. SIT aims to cause the decline of the target insect population through the release of a sufficient number of sterilized male insects. This induces sterility in the female population, as females that mate with sterilized males produce no offspring. Male insects are sterilized through the use of ionizing irradiation. This study aimed to evaluate variable parameters that may affect irradiation in mosquito pupae. METHODS: An Ae. aegypti colony was maintained under standard laboratory conditions. Male and female Ae. aegypti pupae were separated using a Fay and Morlan glass sorter and exposed to different doses of gamma radiation (40, 50, 60, 70 and 80 Gy) using a Co60 source. The effects of radiation on survival, flight ability and the reproductive capacity of Ae. aegypti were evaluated under laboratory conditions. In addition, mating competitiveness was evaluated for irradiated male Ae. aegypti mosquitoes to be used for future SIT programmes in Sri Lanka. RESULTS: Survival of irradiated pupae was reduced by irradiation in a dose-dependent manner but it was invariably greater than 90% in control, 40, 50, 60, 70 Gy in both male and female Ae. aegypti. Irradiation didn't show any significant adverse effects on flight ability of male and female mosquitoes, which consistently exceeded 90%. A similar number of eggs per female was observed between the non-irradiated groups and the irradiated groups for both irradiated males and females. Egg hatch rates were significantly lower when an irradiation dose above 50 Gy was used as compared to 40 Gy in both males and females. Irradiation at higher doses significantly reduced male and female survival when compared to the non-irradiated Ae. aegypti mosquitoes. Competitiveness index (C) scores of sterile and non-sterile males compared with non-irradiated male mosquitoes under laboratory and semi-field conditions were 0.56 and 0.51 respectively at 50 Gy. SIGNIFICATION: Based on the results obtained from the current study, a 50 Gy dose was selected as the optimal radiation dose for the production of sterile Ae. aegypti males for future SIT-based dengue control programmes aiming at the suppression of Ae. aegypti populations in Sri Lanka.


Subject(s)
Aedes , Dengue , Infertility, Male , Aedes/radiation effects , Animals , Dengue/prevention & control , Female , Insecta , Male , Mosquito Control/methods , Pupa/radiation effects , Radiation, Ionizing , Sri Lanka
5.
Biomed Res Int ; 2021: 6649038, 2021.
Article in English | MEDLINE | ID: mdl-33763480

ABSTRACT

BACKGROUND: Genetic modification offers opportunities to introduce artificially created molecular defence mechanisms to vector mosquitoes to counter diseases causing pathogens such as the dengue virus, malaria parasite, and Zika virus. RNA interference is such a molecular defence mechanism that could be used for this purpose to block the transmission of pathogens among human and animal populations. In our previous study, we engineered a dengue-resistant transgenic Ae. aegypti using RNAi to turn off the expression of dengue virus serotype genomes to reduce virus transmission, requiring assessment of the fitness of this mosquito with respect to its wild counterpart in the laboratory and semifield conditions. METHOD: Developmental and reproductive fitness parameters of TM and WM have assessed under the Arthropod Containment Level 2 conditions, and the antibiotic treatment assays were conducted using co-trimoxazole, amoxicillin, and doxycycline to assess the developmental and reproductive fitness parameters. RESULTS: A significant reduction of developmental and reproductive fitness parameters was observed in transgenic mosquito compared to wild mosquitoes. However, it was seen in laboratory-scale studies that the fitness of this mosquito has improved significantly in the presence of antibiotics such as co-trimoxazole, amoxicillin, and doxycycline in their feed. CONCLUSION: Our data indicate that the transgenic mosquito produced had a reduction of the fitness parameters and it may lead to a subsequent reduction of transgenic vector density over the generations in field applications. However, antibiotics of co-trimoxazole, amoxicillin, and doxycycline have shown the improvement of fitness parameters indicating the usefulness in field release of transgenic mosquitoes.


Subject(s)
Animals, Genetically Modified , Anti-Bacterial Agents/pharmacology , Dengue Virus/physiology , Genetic Fitness , Mosquito Vectors , Virus Replication , Aedes/genetics , Aedes/virology , Animals , Dengue/genetics , Dengue/prevention & control , Dengue/transmission , Mosquito Vectors/genetics , Mosquito Vectors/virology , Virus Replication/drug effects , Virus Replication/genetics
6.
Sci Rep ; 11(1): 4080, 2021 02 18.
Article in English | MEDLINE | ID: mdl-33602959

ABSTRACT

Dengue is one of the most important vector-borne infection in Sri Lanka currently leading to vast economic and social burden. Neither a vaccine nor drug is still not being practiced, vector controlling is the best approach to control disease transmission in the country. Therefore, early warning systems are imminent requirement. The aim of the study was to develop Geographic Information System (GIS)-based multivariate analysis model to detect risk hotspots of dengue in the Gampaha District, Sri Lanka to control diseases transmission. A risk model and spatial Poisson point process model were developed using separate layers for patient incidence locations, positive breeding containers, roads, total buildings, public places, land use maps and elevation in four high risk areas in the district. Spatial correlations of each study layer with patient incidences was identified using Kernel density and Euclidean distance functions with minimum allowed distance parameter. Output files of risk model indicate that high risk localities are in close proximity to roads and coincide with vegetation coverage while the Poisson model highlighted the proximity of high intensity localities to public places and possibility of artificial reservoirs of dengue. The latter model further indicate that clustering of dengue cases in a radius of approximately 150 m in high risk areas indicating areas need intensive attention in future vector surveillances.

7.
Biomed Res Int ; 2020: 1053818, 2020.
Article in English | MEDLINE | ID: mdl-33294432

ABSTRACT

BACKGROUND: Aedes aegypti is a major vector of arboviruses that may be controlled on an area-wide basis, using novel approaches such as Sterile Insect Technique (SIT) and Incompatible Insect Technique (IIT). Larval diet is a critical factor to be considered in mass rearing of Aedes mosquitoes for SIT and IIT programs. Therefore, the current study is aimed at evaluating the effects of two novel diets developed from dry fish powder on the growth and development of immature stages and adult fitness-related characteristics of Ae. aegypti in Sri Lanka. METHOD: Three batches of the first instar Ae. aegypti larva, each containing 250 larvae, were exposed to three different larval diets as standard dry fish powder (D1), dry fish powder meal and brewer's yeast (D2), and International Atomic Energy Agency- (IAEA-) recommended diet (D3), separately. Morphometric and developmental parameters of the 4th instar larvae, pupae, and adult mosquitoes reared under different dietary treatments were measured. The entire experimental setup was replicated thrice. A General Linear Model (GLM) in the form of two-way ANOVA was used for the statistical analysis. RESULTS: Significant diet-based variations were observed in the head length, head width, thoracic length, thoracic width, abdominal length, abdominal width, and total length (F 2,87 > 4.811; P < 0.05) of Ae. aegypti larvae. The highest pupation success and the larval size were observed from the larvae fed the D2 diet, while the lowest was reported from D1. All adult morphometric parameters of adult male and female Ae. aegypti mosquitoes also denoted significant dietary variations, reporting the best-sized adults from the D2 diet (F 2,87 > 3.54; P < 0.05). Further, significantly higher fecundity and male longevity were also shown by the adult Ae. aegypti (F 2,6 > 7.897; P < 0.01) mosquitoes reared under diet D2. CONCLUSION: Based on all the growth and developmental parameters, the D2 diet tends to perform similar to the IAEA-recommended diet in mass rearing of Ae. aegypti mosquitoes, while being more inexpensive. Therefore, larval diet D2 could be suggested as the ideal diet for mass rearing of Ae. aegypti for IIT and SIT-based vector control in Sri Lanka.


Subject(s)
Aedes/growth & development , Costs and Cost Analysis , Diet/economics , Aging/physiology , Animals , Behavior, Animal , Larva/growth & development , Life Cycle Stages , Pupa/growth & development
8.
PLoS One ; 15(7): e0235430, 2020.
Article in English | MEDLINE | ID: mdl-32722672

ABSTRACT

Phylogeographic relationships among global collections of the mosquito Aedes aegypti were evaluated using the mitochondrial Cytochrome C Oxidase 1 (CO1) and NADH dehydrogenase subunit 4 (ND4) genes including new sequences from Sri Lanka. Phylogeographic analysis estimated that Ae. aegypti arose as a species ~614 thousand years ago (kya) in the late Pleistocene. At 545 kya an "early" East African clade arose that continued to differentiate in East Africa, and eventually gave rise to three lineages one of which is distributed throughout all tropical and subtropical regions, a second that contains Southeast Asian/Sri Lankan mosquitoes and a third that contains mostly New World mosquitoes. West African collections were not represented in this early clade. The late clade continued to differentiate throughout Africa and gave rise to a lineage that spread globally. The most recent branches of the late clade are represented by South-East Asia and India/Pakistan collections. Analysis of migration rates suggests abundant gene flow between India/Pakistan and the rest of the world with the exception of Africa.


Subject(s)
Aedes/genetics , DNA, Mitochondrial/genetics , Mitochondria/genetics , Phylogeography , Aedes/classification , Africa , Africa, Eastern , Animals , Electron Transport Complex IV/genetics , Gene Flow , Genes, Mitochondrial/genetics , Haplotypes , India , Mitochondria/metabolism , Pakistan , Phylogeny , Sri Lanka
9.
PLoS One ; 15(5): e0231408, 2020.
Article in English | MEDLINE | ID: mdl-32374725

ABSTRACT

Dengue is the most important mosquito-borne viral infection disease in Sri Lanka triggering extensive economic and social burden in the country. Even after numerous source reduction programmes, more than 30,000 incidences are reporting in the country every year. The last and greatest dengue epidemic in the country was reported in July, 2017 with more than 300 dengue related deaths and the highest number of dengue incidences were reported from the District of Gampaha. There is no Dengue Virus (DENV) detection system in field specimens in the district yet and therefore the aim of the study is development of entomological surveillance approach through vector survey programmes together with molecular and phylogenetic methods to identify detection of DENV serotypes circulation in order to minimize adverse effects of imminent dengue outbreaks. Entomological surveys were conducted in five study areas in the district for 36 months and altogether, 10,616 potential breeding places were investigated and 423 were positive for immature stages of dengue vector mosquitoes. During adult collections, 2,718 dengue vector mosquitoes were collected and 4.6% (n = 124) were Aedes aegypti. While entomological indices demonstrate various correlations with meteorological variables and reported dengue incidences, the mosquito pools collected during the epidemic in 2017 were positive for DENV. The results of the phylogenetic analysis illustrated that Envelope (E) gene sequences derived from the isolated DENV belongs to the Clade Ib of Cosmopolitan genotype of the DENV serotype 2 which has been the dominant stain in South-East Asian evidencing that a recent migration of DENV strain to Sri Lanka.


Subject(s)
Animal Migration/physiology , Dengue/epidemiology , Epidemics , Mosquito Vectors , Adolescent , Adult , Aedes/virology , Aged , Aged, 80 and over , Animals , Child , Child, Preschool , Dengue/virology , Dengue Virus/genetics , Disease Outbreaks , Epidemics/history , Female , Genotype , History, 21st Century , Humans , Incidence , Infant , Infant, Newborn , Male , Middle Aged , Mosquito Vectors/physiology , Mosquito Vectors/virology , Population Surveillance/methods , Sri Lanka/epidemiology , Young Adult
10.
Biomed Res Int ; 2020: 9567019, 2020.
Article in English | MEDLINE | ID: mdl-32190692

ABSTRACT

Dengue is the most important mosquito-borne viral infection in Sri Lanka causing an enormous social and economic burden in the country. In the absence of therapeutic drugs and the developed vaccines are under investigation, vector control is the best strategy to reduce the disease transmission. Therefore, the development of novel tools to control dengue vector mosquitoes has become the need of the hour. Novaluron is a recently developed Insect Growth Regulator (IGR) which inhibits chitin synthesis in immature stages of insects. The aim of the study was to identify the efficacy of a simple and cost-effective Autocidal Gravid Ovitrap (AGO) developed using Novaluron to control dengue outbreaks in the District of Gampaha, Sri Lanka. Laboratory and semifield experiments were performed to identify the activity range, optimum field dosage, and residual effects of Novaluron following the World Health Organization guidelines, and field experiments were performed in the Ragama Medical Officer of Health (MOH) area. Two study areas 800 m apart were selected and assigned as treated and control areas randomly. In each study area, 30 households were selected randomly. Each household was given two ovitraps, one placed indoors and the other placed outdoors. Mortality and survival counts were recorded separately for one-year time period and data were analyzed using a two-way repeated measures analysis of variance model. During the laboratory experiments, the adult emerging inhibition was 100% in all tested concentrations. The optimum field dosage was 2 ppm and the residual effect was 28 days. In the field experiments, significantly higher mortality counts were recorded in treated areas both indoor- and outdoor-placed AGOs. Two-factor repeated measures ANOVA followed by Tukey's test confirmed that the mean mortality count is high for the developed AGOs both indoor and outdoor settings. The developed AGO can be deployed to control both indoor and outdoor dengue vector mosquito populations, and in dengue-risk areas, the ovitrap will be supportive to local health authorities to enhance the efficiency of future vector control programs.


Subject(s)
Aedes , Insecticides , Mosquito Control/methods , Mosquito Vectors , Phenylurea Compounds , Animals , Chitin Synthase/metabolism , Dengue/epidemiology , Dengue/prevention & control , Dengue/transmission , Disease Outbreaks/prevention & control , Larva , Models, Molecular , Sri Lanka/epidemiology
11.
RNA Biol ; 17(7): 918-929, 2020 07.
Article in English | MEDLINE | ID: mdl-32138589

ABSTRACT

Dengue viruses (DENV) are the wildest transmitted arbovirus members of the family Flaviviridae, genus Flavivirus. Dengue viruses are composed of four serotypes, DENV1, 2, 3, and 4, and these viruses can cause dengue fever and dengue haemorrhagic fever or dengue shock syndrome, when infecting humans. RNA interference (RNAi) is a self-defence mechanism, which can be used to prevent invasions of RNA viruses to the host. Genetically engineering a host with an RNAi molecule that targets a single virus serotype may develop escape mutants, and can cause unusual dominance over other serotypes. Therefore, the simultaneous targeting of multiple serotypes is necessary to block DENV transmission. Here, we report the development of transgenic Aedes aegypti based on a bioinformatically designed multiple miRshRNA (microRNA-based shRNA) DNA sequence under the control of a blood-meal induced promoter, Carboxypeptidase A, to induce RNAi for DENV in Aedes aegypti, and demonstrate the expression of a synthetic multiple shRNA polycistronic cluster having RNA interference sequences to target DENV genomes. The transgenic mosquitoes have lower rates of infection, dissemination, and transmission for DENV2 and DENV4 compared to wild mosquitoes, with a significant reduction of dengue copy number and antigen levels in the midgut. These levels of DENV were low enough to make transgenic mosquitoes stop the DENV transmission from infected host to a susceptible host and refractory to DENV2 and DENV4 infection. Such multiple resistance in Ae. aegypti has not been documented previously. Laboratory fitness measurement of transgenic Ae. aegypti showed results comparable to other reported transgenic mosquitoes.


Subject(s)
Aedes/genetics , Aedes/virology , Animals, Genetically Modified , Dengue Virus/classification , Genetic Fitness , Mosquito Vectors/genetics , Mosquito Vectors/virology , Serogroup , Animals , Dengue/transmission , Dengue/virology , Female , Gene Expression , Genetic Engineering , Genetic Vectors/genetics , Male , RNA, Small Interfering/genetics
12.
Insects ; 11(3)2020 Mar 06.
Article in English | MEDLINE | ID: mdl-32155917

ABSTRACT

In Sri Lanka, dengue is the most serious arboviral disease. Recent increases in dengue cases suggest a higher infection rate and spread of the disease to new areas. The present study explores gene flow patterns of Ae. aegypti, the main vector of dengue disease, among 10 collection sites including major ports and inland cities using variations at 11 microsatellite loci. Discriminant analysis of principal components (DAPC) and k-means clustering estimated eight genetic clusters. Analysis of Molecular Variance (AMOVA) estimated equal variances among cities and among collections in Colombo, Sri Lanka. Significant evidence, although weak, was detected for isolation by distance. Analysis of gene flow rates and directions using MIGRATE-n indicated that populations throughout the island served as a source of immigrants for Colombo with abundant gene flow among major commercial cities in Sri Lanka, which appear to receive migrant mosquitoes from throughout Sri Lanka. The observed patterns probably arise through human movement of Ae. aegypti during commerce from throughout Sri Lanka into Colombo increasing the risk of spread. The patterns uncovered in this study are significant for global health as Sri Lanka is situated along a key international shipping route.

13.
Sci Rep ; 9(1): 10116, 2019 07 12.
Article in English | MEDLINE | ID: mdl-31300739

ABSTRACT

ß thalassaemia intermedia (ßTI) are a heterogeneous group of disorders known to be extremely phenotypically diverse. This group is more complex to manage as no definitive treatment guidelines exist unlike for ß thalassaemia major (ßTM). There are only a few studies looking at genotype phenotype associations of ßTI outside the Mediterranean region. The reasons for the diverse clinical phenotype in ßTI are unknown. We categorized fifty Sri Lankan patients diagnosed with ßTI as mild, moderate or severe according to published criteria. DNA samples were genotyped for ß thalassaemia mutations, α globin genotype and copy number and known genetic modifiers of haemoglobin F production. There were 26/50 (52.0%) in mild group and 12/50 (24.0%) each in moderate and sever categories. 18/26 (69.2%) classified as mild were ß heterozygotes and 17/18 (94.4%) had excess α globin genes. 11/12 (91.6%) classified as moderate were ß heterozygotes and 8/11 (72.2%) had excess α globin genes. In contrast, 8/12 (66.7%) classified as severe were ß homozygotes and 7/8(87.5%) had α globin gene deletions. In Sri Lanka, co-inheritance of either excess α globin genes in ß thalassaemia heterozygotes or α globin gene deletions in ß thalassaemia homozygotes is a significant factor in modulating disease severity.


Subject(s)
alpha-Globins/genetics , beta-Thalassemia/etiology , Adolescent , Adult , Aged , Blood Transfusion , Child , Child, Preschool , Female , Genetic Association Studies , Genotype , Heterozygote , Homozygote , Humans , Male , Middle Aged , Mutation , Sri Lanka , Young Adult , beta-Thalassemia/genetics , beta-Thalassemia/therapy
14.
PLoS One ; 14(5): e0216140, 2019.
Article in English | MEDLINE | ID: mdl-31136574

ABSTRACT

Many countries are in search of more effective and sustainable methods for controlling dengue vectors, due to undeniable inefficiencies in chemical and mechanical vector control methods. Bio-control of vectors by copepods is an ideal method of using interactions in the natural ecosystem for vector management, with minimum consequences on the environment. Current study determined the predatory efficacy of five locally abundant copepod species on, Aedes larvae under laboratory conditions. Copepods were collected from the pre-identified locations within the districts of Gampaha and Kandy, and identified morphologically. Individual species of copepods were maintained as separate colonies with Paramecium culture and wheat grain as supplementary food. Five adult copepods of each species was introduced into separate containers with 200 larvae (1st instar) of Aedes aegypti. Number of larvae survived in containers were enumerated at 3 hour intervals within a duration of 24 hours. Each experiment was repeated five times. The same procedure was followed for Ae. albopictus. Significance in the variations among predation rates was evaluated with General Linear Modelling (GLM) followed by Tukey's pair-wise comparison in SPSS (version 23). Significant variations in predation rates of studied copepod species were reported (p<0.05), whereby M. leuckarti indicated the highest followed by M. scrassus, while C. languides indicated the lowest predatory efficacy. The effect of different Aedes larval species on the predation rates of copepods remained significant (p<0.05), even though the effect on predatory efficiency was not significant. Based on the findings, both M. leuckarti and M. scrassus, with the highest predatory efficiencies, could be recommended as potential candidates for biological controlling of Aedes vectors in Sri Lanka.


Subject(s)
Aedes/growth & development , Copepoda/physiology , Dengue/prevention & control , Larva/growth & development , Mosquito Control/methods , Pest Control, Biological/methods , Predatory Behavior/physiology , Animals , Disease Vectors , Ecosystem , Mosquito Vectors/growth & development , Sri Lanka
15.
Malar Res Treat ; 2019: 1650180, 2019.
Article in English | MEDLINE | ID: mdl-30992745

ABSTRACT

BACKGROUND: A detailed knowledge of the distribution of the malaria vectors in Mannar district of Sri Lanka has not been studied after 1927. Past records indicated the presence of only seven species of anophelines, namely, An. culicifacies, An. subpictus, An. barbirostris, An. peditaeniatus, An. nigerrimus, An. Jamesii, and An. maculatus. There have been many changes in terms of distribution of Anopheles in the district over time. METHODS: Entomological surveillance was conducted on a monthly basis, comprising indoor hand collection, window trap collection, cattle-baited net collection, cattle-baited hut collection, and larval survey from June 2010 to June 2012 in 12 study areas under three entomological sentinel sites. The relationship between seven abiotic variables of the breeding habitats was measured. Pearson's correlation coefficients were used to determine the associations between climatic variables and anopheline densities. RESULTS: A total of 74,181 mosquitoes belonging to 14 Anopheles species were recorded. An. subpictus was the most predominant species from all techniques representing 92% (n=68,268) of the total anopheline collection. However, Anopheles culicifacies was not recorded from any site during the study period. Larval surveys identified 12 breeding habitat categories including waste water collections, lagoon water collections, and drains which were not recorded as breeding habitats by previous studies. The mean dissolved oxygen level of waste water collections was 3.45±0.15 mg/l. The mean salinity and conductivity of lagoon water collections were 21105±1344 mg/l and 34734±1974 µs/cm, respectively. CONCLUSION: The present study provides the updated knowledge on anopheline distribution and vector bionomics. Therefore, documentation of the current knowledge would be useful for learners and health authorities to design appropriate vector control measures in the prevention of reintroduction of malaria.

17.
J Vector Borne Dis ; 56(3): 200-206, 2019.
Article in English | MEDLINE | ID: mdl-32655068

ABSTRACT

BACKGROUND & OBJECTIVES: Although malaria is eliminated from Sri Lanka, there is a possible risk of spread from infected persons coming from malaria endemic countries. The presence of major and potential vectors in several parts of the country along with drug resistance, necessitates the identification of effective and novel control methods. The present study focused on identifying effective biological control agents for anopheline larvae using carnivorous copepods under laboratory and field conditions to prevent re-introduction of malaria in the country. METHODS: Three copepod species, namely Mesocyclops scrassus, Cyclops varicans and C. languides collected from different areas in the country were cultured by adding supplementary food, and their predatory efficacy was evaluated under laboratory and field conditions. RESULTS: Significant variation (p <0.05) was observed in predation rates of studied copepod species. The species M. scrassus showed the highest predacious efficiency, and consumed the highest number of anopheline larvae under laboratory and field conditions. Further, M. scrassus had higher survival rate than C. varicans and C. languides. INTERPRETATION & CONCLUSION: The results of the study suggest that the predatory copepod M. scrassus can be used as a bio-control agent for the control of Anopheles mosquitoes to prevent re-emergence of malaria in the country. Additional research is suggested to identify naturally available copepod species and their predatory efficacy.


Subject(s)
Anopheles/parasitology , Biological Control Agents , Copepoda/physiology , Mosquito Control/methods , Predatory Behavior , Animals , Female , Larva/parasitology , Malaria/prevention & control , Sri Lanka
18.
Parasit Vectors ; 11(1): 526, 2018 Sep 26.
Article in English | MEDLINE | ID: mdl-30257701

ABSTRACT

BACKGROUND: Dengue is a serious arboviral disease in Sri Lanka with a large number of dengue fever (DF) cases every year. Control of the primary vector Aedes aegypti depends upon larval habitat source reduction and insecticide application. However, increases in the number of reported cases suggest the inefficiency of current control strategies and the possibility of resistance to currently used insecticides. Early detection of mutations in the voltage-gated sodium channel (vgsc) gene that confer knockdown resistance (kdr) to pyrethroid insecticides is important in resistance management in vector populations. RESULTS: Resistance to pyrethroid insecticides was detected in the three populations studied. Polymerase chain reaction was used to detect the presence of two kdr mutations F1534C and V1016G. During this process a S989P mutation was also detected in pyrethroid-resistant Ae. aegypti populations. These mutations were found to be widespread and frequent in the collections studied. CONCLUSIONS: To our knowledge, this study reveals for the first time the presence of V1016G and S989P mutant alleles in the vgsc of Sri Lankan Ae. aegypti populations. The spread of the mutant alleles throughout the country poses a threat of increased resistance to pyrethroids. Long-term insecticide applications and indiscriminate use of pyrethroids has led to the evolution of resistance. More strategic and diverse strategies, including novel insecticides with new modes of action and community participation, should be engaged for Ae. aegypti control.


Subject(s)
Aedes/genetics , Insecticide Resistance/genetics , Mosquito Vectors/genetics , Pyrethrins , Alleles , Animals , Genotype , Insect Proteins/genetics , Insecticides , Mutation , Sri Lanka
19.
Parasit Vectors ; 11(1): 262, 2018 04 24.
Article in English | MEDLINE | ID: mdl-29690906

ABSTRACT

BACKGROUND: Dengue is one of the major health problems in Sri Lanka causing an enormous social and economic burden to the country. An accurate early warning system can enhance the efficiency of preventive measures. The aim of the study was to develop and validate a simple accurate forecasting model for the District of Gampaha, Sri Lanka. Three time-series regression models were developed using monthly rainfall, rainy days, temperature, humidity, wind speed and retrospective dengue incidences over the period January 2012 to November 2015 for the District of Gampaha, Sri Lanka. Various lag times were analyzed to identify optimum forecasting periods including interactions of multiple lags. The models were validated using epidemiological data from December 2015 to November 2017. Prepared models were compared based on Akaike's information criterion, Bayesian information criterion and residual analysis. RESULTS: The selected model forecasted correctly with mean absolute errors of 0.07 and 0.22, and root mean squared errors of 0.09 and 0.28, for training and validation periods, respectively. There were no dengue epidemics observed in the district during the training period and nine outbreaks occurred during the forecasting period. The proposed model captured five outbreaks and correctly rejected 14 within the testing period of 24 months. The Pierce skill score of the model was 0.49, with a receiver operating characteristic of 86% and 92% sensitivity. CONCLUSIONS: The developed weather based forecasting model allows warnings of impending dengue outbreaks and epidemics in advance of one month with high accuracy. Depending upon climatic factors, the previous month's dengue cases had a significant effect on the dengue incidences of the current month. The simple, precise and understandable forecasting model developed could be used to manage limited public health resources effectively for patient management, vector surveillance and intervention programmes in the district.


Subject(s)
Dengue/epidemiology , Epidemiologic Methods , Forecasting/methods , Humans , Humidity , Incidence , Models, Statistical , Rain , Sri Lanka/epidemiology , Temperature , Weather , Wind
20.
Biomed Res Int ; 2018: 8759459, 2018.
Article in English | MEDLINE | ID: mdl-30627580

ABSTRACT

INTRODUCTION: Limitations in breeding source reduction practices, development of insecticide resistance in mosquitoes, and ill effects of chemical controlling methods on human and ecosystem health have motivated Sri Lankan authorities working for dengue control to seek for alternative, ecofriendly, and sustainable approaches for controlling of Aedes vectors, to manage dengue epidemics. The present study attempted to investigate the predation efficiency of locally available dragonfly nymphs over Aedes aegypti under laboratory conditions, aiming to evaluate the potential of using dragonflies as biocontrol agents against dengue. METHODS: Nymphal stages of five locally abundant dragonfly species were collected from different stagnated water bodies in Belihuloya area. After morphological identification, a well grown individual of each species was starved for 12 hours and introduced into a glass tank containing 1L of pond water with 200 larvae (4th instar) of Aedes aegypti. Number of larvae survived in the tank was enumerated hourly up to 48 hours. In case where >75% of larvae are consumed by dragonfly nymphs, additional Ae. aegypti larvae were introduced into such tanks. Experiment was repeated for five times. Same procedure was followed with different stages of growth of the dragonfly nymphs characterized by the highest predation rate. General Linear Model followed by Tukey's pairwise comparison was used for statistical analysis. RESULTS: The predation rates of different dragonfly species varied significantly (p<0.05), whereby Anax indicus (110±7.14 per day) indicated the highest, followed by Pantala flavescens (54.07±5.15) and Gynacantha dravida (49.00±11.89), while Tholymis tillarga (23.47±2.48) had the lowest. Further, significant variations in the larval predation were found among different maturity stages (10-20; 25-35; and 35-45 mm in body length) of Ana. indicus (p<0.05). Regardless of statistical significance, a relatively higher larvicidal activity was observed at dusk than in dawn. Conclusion. Ana. indicus, which is characterized by the highest predation rate, and P. flavescens that has the widest geographical distribution within Sri Lanka along with a notable predation efficacy could be recommended as potential candidates for field trials in biological control of dengue outbreaks via suppression of Ae. aegypti larvae.


Subject(s)
Odonata/physiology , Pest Control, Biological , Aedes , Animals , Feeding Behavior , Larva/physiology , Species Specificity , Sri Lanka
SELECTION OF CITATIONS
SEARCH DETAIL