Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Mol Sci ; 24(2)2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36675046

ABSTRACT

Phages are highly ubiquitous biological agents, which means they are ideal tools for molecular biology and recombinant DNA technology. The development of a phage display technology was a turning point in the design of phage-based vaccines. Phages are now recognized as universal adjuvant-free nanovaccine platforms. Phages are well-suited for vaccine design owing to their high stability in harsh conditions and simple and inexpensive large-scale production. The aim of this review is to summarize the overall breadth of the antiviral therapeutic perspective of phages contributing to the development of phage-based vaccines for COVID-19. We show that phage vaccines induce a strong and specific humoral response by targeted phage particles carrying the epitopes of SARS-CoV-2. Further, the engineering of the T4 bacteriophage by CRISPR (clustered regularly interspaced short palindromic repeats) presents phage vaccines as a valuable platform with potential capabilities of genetic plasticity, intrinsic immunogenicity, and stability.


Subject(s)
Bacteriophages , COVID-19 , Vaccines , Humans , Bacteriophages/genetics , COVID-19 Vaccines/genetics , COVID-19/therapy , COVID-19/genetics , SARS-CoV-2/genetics , Bacteriophage T4/genetics , Clustered Regularly Interspaced Short Palindromic Repeats
SELECTION OF CITATIONS
SEARCH DETAIL