Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PeerJ ; 12: e17394, 2024.
Article in English | MEDLINE | ID: mdl-38827296

ABSTRACT

The increasing frequency of zoonotic spillover events and viral mutations in low and middle-income countries presents a critical global health challenge. Contributing factors encompass cultural practices like bushmeat consumption, wildlife trade for traditional medicine, habitat disruption, and the encroachment of impoverished settlements onto natural habitats. The existing "vaccine gap" in many developing countries exacerbates the situation by allowing unchecked viral replication and the emergence of novel mutant viruses. Despite global health policies addressing the root causes of zoonotic disease emergence, there is a significant absence of concrete prevention-oriented initiatives, posing a potential risk to vulnerable populations. This article is targeted at policymakers, public health professionals, researchers, and global health stakeholders, particularly those engaged in zoonotic disease prevention and control in low and middle-income countries. The article underscores the importance of assessing potential zoonotic diseases at the animal-human interface and comprehending historical factors contributing to spillover events. To bridge policy gaps, comprehensive strategies are proposed that include education, collaborations, specialized task forces, environmental sampling, and the establishment of integrated diagnostic laboratories. These strategies advocate simplicity and unity, breaking down barriers, and placing humanity at the forefront of addressing global health challenges. Such a strategic and mental shift is crucial for constructing a more resilient and equitable world in the face of emerging zoonotic threats.


Subject(s)
Developing Countries , Zoonoses , Humans , Animals , Zoonoses/prevention & control , Zoonoses/virology , Zoonoses/epidemiology , Zoonoses/transmission , Mutation , Health Policy/legislation & jurisprudence , Global Health , Communicable Diseases, Emerging/prevention & control , Communicable Diseases, Emerging/epidemiology , Communicable Diseases, Emerging/virology , Communicable Diseases, Emerging/transmission
2.
Vet Anim Sci ; 23: 100331, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38283334

ABSTRACT

This study attempts to isolate a candidate growth promoter from the ovine paunch waste and scrutinize its effects on the production performance of broiler chickens as compared to mannan-oligosaccharide (MOS), a prebiotic, and lincomycin, an antibiotic growth promoter (AB). The paunch waste collected from slaughtered sheep was processed to remove particulate matter. The clarified liquid was then added to an excess of ethanol (1:9 ratio), and the resultant precipitate {(novel growth-promoting paunch extract (NGPE)} was collected, dried, and stored. In vitro increase in cell density for probiotic bacteria viz. Lactobacillus rhamnosus and Enterococcus faecalis (Log10 CFU/ml) were significantly higher (P < 0.01) in NGPE supplemented media (2.78 ± 0.11 and 2.77 ± 0.10) as compared to that on MOS (1.28 ± 0.05 and 2.49 ± 0.09) and glucose (1.09 ± 0.04 and 1.12 ± 0.04) supplemented media. In the in-vivo trial of six weeks duration with broiler chickens (Cobb-400), NGPE supplementation resulted in significantly higher growth in weeks IV (P < 0.05) and VI (P < 0.01) of age in comparison to MOS and AGP supplemented groups, a lower (P < 0.01) cumulative feed conversion ratio in comparison to MOS supplemented groups, and a higher (P < 0.01) cumulative protein efficiency ratio compared to MOS and AGP supplementation. NGPE supplementation also lowered lipid peroxidation (P < 0.01), increased reduced glutathione activity (P < 0.01) in chicken erythrocytes, and boosted the lactic acid bacteria count in the cecal contents (P < 0.01). This is the first report of the isolation of a paunch waste extract that increased the in vitro growth of probiotic bacteria and improved the production performance of broiler chickens.

3.
Genes (Basel) ; 14(6)2023 06 17.
Article in English | MEDLINE | ID: mdl-37372463

ABSTRACT

Potential single nucleotide polymorphisms (SNPs) were detected between two chicken breeds (Kashmir favorella and broiler) using deep RNA sequencing. This was carried out to comprehend the coding area alterations, which cause variances in the immunological response to Salmonella infection. In the present study, we identified high impact SNPs from both chicken breeds in order to delineate different pathways that mediate disease resistant/susceptibility traits. Samples (liver and spleen) were collected from Salmonella resistant (K. favorella) and susceptible (broiler) chicken breeds. Salmonella resistance and susceptibility were checked by different pathological parameters post infection. To explore possible polymorphisms in genes linked with disease resistance, SNP identification analysis was performed utilizing RNA seq data from nine K. favorella and ten broiler chickens. A total of 1778 (1070 SNPs and 708 INDELs) and 1459 (859 SNPs and 600 INDELs) were found to be specific to K. favorella and broiler, respectively. Based on our results, we conclude that in broiler chickens the enriched pathways mostly included metabolic pathways like fatty acid metabolism, carbon metabolism and amino acid metabolism (Arginine and proline metabolism), while as in K. favorella genes with high impact SNPs were enriched in most of the immune-related pathways like MAPK signaling pathway, Wnt signaling pathway, NOD-like receptor signaling pathway, etc., which could be a possible resistance mechanism against salmonella infection. In K. favorella, protein-protein interaction analysis also shows some important hub nodes, which are important in providing defense against different infectious diseases. Phylogenomic analysis revealed that indigenous poultry breeds (resistant) are clearly separated from commercial breeds (susceptible). These findings will offer fresh perspectives on the genetic diversity in chicken breeds and will aid in the genomic selection of poultry birds.


Subject(s)
Chickens , Polymorphism, Single Nucleotide , Animals , Chickens/genetics , RNA-Seq , Computational Biology , Salmonella/genetics
4.
BMC Genomics ; 24(1): 214, 2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37098463

ABSTRACT

Salmonella enterica serovar typhimurium is the cause of significant morbidity and mortality worldwide that causes economic losses to poultry and is able to cause infection in humans. Indigenous chicken breeds are a potential source of animal protein and have the added advantage of being disease resistant. An indigenous chicken, Kashmir favorella and commercial broiler were selected for understanding the mechanism of disease resistance. Following infection in Kashmir favorella, three differentially expressed genes Nuclear Factor Kappa B (NF-κB1), Forkhead Box Protein O3 (FOXO3) and Paired box 5 (Pax5) were identified. FOXO3, a transcriptional activator, is the potential marker of host resistance in Salmonella infection. NF-κB1 is an inducible transcription factor which lays the foundation for studying gene network of the innate immune response of Salmonella infection in chicken. Pax5 is essential for differentiation of pre-B cells into mature B cell. The real time PCR analysis showed that in response to Salmonella Typhimurium infection a remarkable increase of NF-κB1 (P˂0.01), FOXO3 (P˂0.01) gene expression in liver and Pax5 (P˂0.01) gene expression in spleen of Kashmir favorella was observed. The protein-protein interaction (PPI) and protein-TF interaction network by STRINGDB analysis suggests that FOXO3 is a hub gene in the network and is closely related to Salmonella infection along with NF-κB1. All the three differentially expressed genes (NF-κB1, FOXO3 and PaX5) showed their influence on 12 interacting proteins and 16 TFs, where cyclic adenosine monophosphate Response Element Binding protein (CREBBP), erythroblast transformation-specific (ETSI), Tumour-protein 53(TP53I), IKKBK, lymphoid enhancer-binding factor-1 (LEF1), and interferon regulatory factor-4 (IRF4) play role in immune responses. This study shall pave the way for newer strategies for treatment and prevention of Salmonella infection and may help in increasing the innate disease resistance.


Subject(s)
Chickens , Salmonella Infections, Animal , Humans , Animals , Chickens/genetics , Salmonella typhimurium/genetics , Transcription Factors/genetics , Disease Resistance , Salmonella Infections, Animal/genetics , Gene Expression Profiling
5.
Front Vet Sci ; 9: 866614, 2022.
Article in English | MEDLINE | ID: mdl-35720847

ABSTRACT

Salmonella enterica serovar typhimurium (S. typhimurium) is the leading cause of foodborne illness. Since Salmonella continues to have a detrimental effect on public health, there is an ongoing need to develop more advanced methods for combating Salmonellosis in foods before they reach consumers. In addition, the quest for alternative natural products has recently intensified due to increasingly stringent regulations regarding the use of antibiotics as growth promoters and consumer demand for antibiotic-free poultry products. This study evaluated the effect of Ajwain extract (AJE) on immune response and antioxidant status in broiler chicks challenged with Salmonella typhimurium. The chicks were infected with S. typhimurium and were divided into the different groups, except for the control group (CON). The challenged chicks received different treatments with 3 × 109 colony-forming unit (CFU) AciproTM-WS probiotic (PRO), 200 mg/kg Ajwain extract (AJE), 200 mg/100 kg of enrofloxacin (ENR), and a combination of 3 × 109 CFU AciproTM-WS probiotic and 200 mg/kg Ajwain extract (COM). Five days posttreatment, the tissue samples (liver and spleen) were analyzed. The results showed that basal diet supplemented with Ajwain extract (AJE) and a combination of probiotic and Ajwain extract (COM) significantly (P < 0.0.5) reduced the cytokine expression in broiler chicks challenged with S. typhimurium. Our findings suggest that AJE can clear the bacterial infection, improve antioxidant status, and suppress the inflammation response. Additionally, AJE supplementation significantly mitigated the S. typhimurium-induced increase in the interleukin-6 (IL-6) (liver and spleen), interleukin-8 (IL-8) (liver and spleen), interleukin-17A (IL-17A) (liver and spleen), and inducible nitric oxide (iNOS) (spleen and liver) levels (P < 0.05). We conclude that Ajwain is an efficient feed additive with antioxidant and anti-inflammatory properties. The interaction networks developed in this study provide a novel lead that could be targeted for anti-inflammatory and antioxidant properties.

SELECTION OF CITATIONS
SEARCH DETAIL
...