Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
Nat Genet ; 56(7): 1482-1493, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38811841

ABSTRACT

Clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) is a powerful tool for introducing targeted mutations in DNA, but recent studies have shown that it can have unintended effects such as structural changes. However, these studies have not yet looked genome wide or across data types. Here we performed a phenotypic CRISPR-Cas9 scan targeting 17,065 genes in primary human cells, revealing a 'proximity bias' in which CRISPR knockouts show unexpected similarities to unrelated genes on the same chromosome arm. This bias was found to be consistent across cell types, laboratories, Cas9 delivery methods and assay modalities, and the data suggest that it is caused by telomeric truncations of chromosome arms, with cell cycle and apoptotic pathways playing a mediating role. Additionally, a simple correction is demonstrated to mitigate this pervasive bias while preserving biological relationships. This previously uncharacterized effect has implications for functional genomic studies using CRISPR-Cas9, with applications in discovery biology, drug-target identification, cell therapies and genetic therapeutics.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Humans , Gene Editing/methods , Chromosome Mapping/methods , Genome, Human
2.
Intern Med J ; 54(8): 1283-1291, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38497689

ABSTRACT

BACKGROUND: High/intermediate-risk pulmonary embolism (PE) confers increased risk of cardiovascular morbidity and mortality. International guidelines recommend the formation of a PE response team (PERT) for PE management because of the complexity of risk stratification and emerging treatment options. However, there are currently no available Australian data regarding outcomes of PE managed through a PERT. AIMS: To analyse the clinical and outcome data of patients from an Australian centre with high/intermediate-risk PE requiring PERT-guided management. METHODS: We performed a retrospective observational study of 75 consecutive patients with high/intermediate-risk PE who had PERT involvement, between August 2018 and July 2021. We recorded clinical and interventional data at the time of PERT and assessed patient outcomes up to 30 days from PERT initiation. We used unpaired t tests to compare right to left ventricular (RV/LV) ratios by computed tomography criteria or transthoracic echocardiogram (TTE) at baseline and after interventions. RESULTS: Data were available for 74 patients. Initial computed tomography pulmonary angiography RV/LV ratio was increased at 1.65 ± 0.5 and decreased to 1.30 ± 0.29 following PERT-guided interventions (P < 0.001). TTE RV/LV ratio also decreased following PERT-guided management (1.09 ± 0.19 vs 0.93 ± 0.17; P < 0.001). 20% of patients had any bleeding complication, but two-thirds were mild, not requiring intervention. All-cause mortality was 6.8%, and all occurred within the first 7 days of admission. CONCLUSION: The PERT model is feasible in a large Australian centre in managing complex and time-critical PE. Our data demonstrate outcomes comparable with existing published international PERT data. However, successful implementation at other Australian institutions may require adequate centre-specific resource availability and the presence of multispeciality input.


Subject(s)
Pulmonary Embolism , Humans , Pulmonary Embolism/therapy , Pulmonary Embolism/mortality , Male , Female , Retrospective Studies , Middle Aged , Aged , Australia/epidemiology , Echocardiography , Patient Care Team , Aged, 80 and over , Adult , Computed Tomography Angiography , Risk Assessment
3.
Nat Biomed Eng ; 5(6): 490-492, 2021 06.
Article in English | MEDLINE | ID: mdl-34131322
4.
Genet Med ; 22(10): 1694-1702, 2020 10.
Article in English | MEDLINE | ID: mdl-32595206

ABSTRACT

PURPOSE: Carrier status associates strongly with genetic ancestry, yet current carrier screening guidelines recommend testing for a limited set of conditions based on a patient's self-reported ethnicity. Ethnicity, which can reflect both genetic ancestry and cultural factors (e.g., religion), may be imperfectly known or communicated by patients. We sought to quantitatively assess the efficacy and equity with which ethnicity-based carrier screening captures recessive disease risk. METHODS: For 93,419 individuals undergoing a 96-gene expanded carrier screen (ECS), correspondence was assessed among carrier status, self-reported ethnicity, and a dual-component genetic ancestry (e.g., 75% African/25% European) calculated from sequencing data. RESULTS: Self-reported ethnicity was an imperfect indicator of genetic ancestry, with 9% of individuals having >50% genetic ancestry from a lineage inconsistent with self-reported ethnicity. Limitations of self-reported ethnicity led to missed carriers in at-risk populations: for 10 ECS conditions, patients with intermediate genetic ancestry backgrounds-who did not self-report the associated ethnicity-had significantly elevated carrier risk. Finally, for 7 of the 16 conditions included in current screening guidelines, most carriers were not from the population the guideline aimed to serve. CONCLUSION: Substantial and disproportionate risk for recessive disease is not detected when carrier screening is based on ethnicity, leading to inequitable reproductive care.


Subject(s)
Ethnicity , Genetic Counseling , Ethnicity/genetics , Genetic Carrier Screening , Genetic Testing , Humans , Self Report
5.
BMC Cancer ; 19(1): 832, 2019 Aug 23.
Article in English | MEDLINE | ID: mdl-31443703

ABSTRACT

BACKGROUND: Blood-based methods using cell-free DNA (cfDNA) are under development as an alternative to existing screening tests. However, early-stage detection of cancer using tumor-derived cfDNA has proven challenging because of the small proportion of cfDNA derived from tumor tissue in early-stage disease. A machine learning approach to discover signatures in cfDNA, potentially reflective of both tumor and non-tumor contributions, may represent a promising direction for the early detection of cancer. METHODS: Whole-genome sequencing was performed on cfDNA extracted from plasma samples (N = 546 colorectal cancer and 271 non-cancer controls). Reads aligning to protein-coding gene bodies were extracted, and read counts were normalized. cfDNA tumor fraction was estimated using IchorCNA. Machine learning models were trained using k-fold cross-validation and confounder-based cross-validations to assess generalization performance. RESULTS: In a colorectal cancer cohort heavily weighted towards early-stage cancer (80% stage I/II), we achieved a mean AUC of 0.92 (95% CI 0.91-0.93) with a mean sensitivity of 85% (95% CI 83-86%) at 85% specificity. Sensitivity generally increased with tumor stage and increasing tumor fraction. Stratification by age, sequencing batch, and institution demonstrated the impact of these confounders and provided a more accurate assessment of generalization performance. CONCLUSIONS: A machine learning approach using cfDNA achieved high sensitivity and specificity in a large, predominantly early-stage, colorectal cancer cohort. The possibility of systematic technical and institution-specific biases warrants similar confounder analyses in other studies. Prospective validation of this machine learning method and evaluation of a multi-analyte approach are underway.


Subject(s)
Biomarkers, Tumor , Circulating Tumor DNA , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Genome, Human , Genomics , Machine Learning , Aged , Aged, 80 and over , Colorectal Neoplasms/blood , Computational Biology/methods , Female , Gene Expression Profiling , Genomics/methods , Humans , Male , Middle Aged , Neoplasm Staging , ROC Curve , Reproducibility of Results , Transcriptome
6.
Mol Genet Genomic Med ; 7(8): e836, 2019 08.
Article in English | MEDLINE | ID: mdl-31293106

ABSTRACT

BACKGROUND: Pathogenic variants in HEXA that impair ß-hexosaminidase A (Hex A) enzyme activity cause Tay-Sachs Disease (TSD), a severe autosomal-recessive neurodegenerative disorder. Hex A enzyme analysis demonstrates near-zero activity in patients affected with TSD and can also identify carriers, whose single functional copy of HEXA results in reduced enzyme activity relative to noncarriers. Although enzyme testing has been optimized and widely used for carrier screening in Ashkenazi Jewish (AJ) individuals, it has unproven sensitivity and specificity in a pan-ethnic population. The ability to detect HEXA variants via DNA analysis has evolved from limited targeting of a few ethnicity-specific variants to next-generation sequencing (NGS) of the entire coding region coupled with interpretation of any discovered novel variants. METHODS: We combined results of enzyme testing, retrospective computational analysis, and variant reclassification to estimate the respective clinical performance of TSD screening via enzyme analysis and NGS. We maximized NGS accuracy by reclassifying variants of uncertain significance and compared to the maximum performance of enzyme analysis estimated by calculating ethnicity-specific frequencies of variants known to yield false-positive or false-negative enzyme results (e.g., pseudodeficiency and B1 alleles). RESULTS: In both AJ and non-AJ populations, the estimated clinical sensitivity, specificity, and positive predictive value were higher by NGS than by enzyme testing. The differences were significant for all comparisons except for AJ clinical sensitivity, where NGS exceeded enzyme testing, but not significantly. CONCLUSIONS: Our results suggest that performance of an NGS-based TSD carrier screen that interrogates the entire coding region and employs novel variant interpretation exceeds that of Hex A enzyme testing, warranting a reconsideration of existing guidelines.


Subject(s)
Enzyme Assays/standards , Genetic Carrier Screening/methods , High-Throughput Nucleotide Sequencing/standards , Tay-Sachs Disease/diagnosis , beta-Hexosaminidase alpha Chain/genetics , Cohort Studies , Ethnicity/genetics , False Negative Reactions , False Positive Reactions , Genetic Carrier Screening/standards , Genetic Counseling/methods , Genetic Counseling/standards , Heterozygote , Humans , Mutation , Polymorphism, Single Nucleotide , Practice Guidelines as Topic , Retrospective Studies , Sensitivity and Specificity , Tay-Sachs Disease/genetics
7.
Nat Rev Genet ; 20(2): 71-88, 2019 02.
Article in English | MEDLINE | ID: mdl-30410101

ABSTRACT

Precision oncology seeks to leverage molecular information about cancer to improve patient outcomes. Tissue biopsy samples are widely used to characterize tumours but are limited by constraints on sampling frequency and their incomplete representation of the entire tumour bulk. Now, attention is turning to minimally invasive liquid biopsies, which enable analysis of tumour components (including circulating tumour cells and circulating tumour DNA) in bodily fluids such as blood. The potential of liquid biopsies is highlighted by studies that show they can track the evolutionary dynamics and heterogeneity of tumours and can detect very early emergence of therapy resistance, residual disease and recurrence. However, the analytical validity and clinical utility of liquid biopsies must be rigorously demonstrated before this potential can be realized.


Subject(s)
Circulating Tumor DNA/genetics , Neoplastic Cells, Circulating/pathology , Precision Medicine/methods , Circulating Tumor DNA/blood , Humans , Liquid Biopsy/methods , Neoplasm, Residual
8.
PLoS Genet ; 14(7): e1007499, 2018 07.
Article in English | MEDLINE | ID: mdl-29965964

ABSTRACT

[This corrects the article DOI: 10.1371/journal.pgen.1006915.].

9.
Clin Chem ; 64(7): 1063-1073, 2018 07.
Article in English | MEDLINE | ID: mdl-29760218

ABSTRACT

BACKGROUND: By identifying pathogenic variants across hundreds of genes, expanded carrier screening (ECS) enables prospective parents to assess the risk of transmitting an autosomal recessive or X-linked condition. Detection of at-risk couples depends on the number of conditions tested, the prevalence of the respective diseases, and the screen's analytical sensitivity for identifying disease-causing variants. Disease-level analytical sensitivity is often <100% in ECS tests because copy number variants (CNVs) are typically not interrogated because of their technical complexity. METHODS: We present an analytical validation and preliminary clinical characterization of a 235-gene sequencing-based ECS with full coverage across coding regions, targeted assessment of pathogenic noncoding variants, panel-wide CNV calling, and specialized assays for technically challenging genes. Next-generation sequencing, customized bioinformatics, and expert manual call review were used to identify single-nucleotide variants, short insertions and deletions, and CNVs for all genes except FMR1 and those whose low disease incidence or high technical complexity precluded novel variant identification or interpretation. RESULTS: Screening of 36859 patients' blood or saliva samples revealed the substantial impact on fetal disease-risk detection attributable to novel CNVs (9.19% of risk) and technically challenging conditions (20.2% of risk), such as congenital adrenal hyperplasia. Of the 7498 couples screened, 335 were identified as at risk for an affected pregnancy, underscoring the clinical importance of the test. Validation of our ECS demonstrated >99% analytical sensitivity and >99% analytical specificity. CONCLUSIONS: Validated high-fidelity identification of different variant types-especially for diseases with complicated molecular genetics-maximizes at-risk couple detection.


Subject(s)
DNA Copy Number Variations , Exons , Genetic Carrier Screening , Cohort Studies , Humans , INDEL Mutation , Polymorphism, Single Nucleotide
10.
Genet Med ; 20(1): 55-63, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28640244

ABSTRACT

PurposeThe recent growth in pan-ethnic expanded carrier screening (ECS) has raised questions about how such panels might be designed and evaluated systematically. Design principles for ECS panels might improve clinical detection of at-risk couples and facilitate objective discussions of panel choice.MethodsGuided by medical-society statements, we propose a method for the design of ECS panels that aims to maximize the aggregate and per-disease sensitivity and specificity across a range of Mendelian disorders considered serious by a systematic classification scheme. We evaluated this method retrospectively using results from 474,644 de-identified carrier screens. We then constructed several idealized panels to highlight strengths and limitations of different ECS methodologies.ResultsBased on modeled fetal risks for "severe" and "profound" diseases, a commercially available ECS panel (Counsyl) is expected to detect 183 affected conceptuses per 100,000 US births. A screen's sensitivity is greatly impacted by two factors: (i) the methodology used (e.g., full-exon sequencing finds more affected conceptuses than targeted genotyping) and (ii) the detection rate of the screen for diseases with high prevalence and complex molecular genetics (e.g., fragile X syndrome).ConclusionThe described approaches enable principled, quantitative evaluation of which diseases and methodologies are appropriate for pan-ethnic expanded carrier screening.


Subject(s)
Genetic Carrier Screening/methods , Genetic Carrier Screening/standards , Genetic Diseases, Inborn/diagnosis , Genetic Diseases, Inborn/genetics , Female , Genetic Association Studies , Genetic Predisposition to Disease , Genetic Testing/methods , Genetic Testing/standards , Genomics/methods , Genomics/standards , Guideline Adherence , Humans , Reproducibility of Results
11.
J Genet Couns ; 27(3): 616-625, 2018 06.
Article in English | MEDLINE | ID: mdl-28956228

ABSTRACT

Expanded carrier screening (ECS) analyzes dozens or hundreds of recessive genes to determine reproductive risk. Data on the clinical utility of screening conditions beyond professional guidelines are scarce. Individuals underwent ECS for up to 110 genes. Five-hundred thirty-seven at-risk couples (ARC), those in which both partners carry the same recessive disease, were invited to participate in a retrospective IRB-approved survey of their reproductive decision making after receiving ECS results. Sixty-four eligible ARC completed the survey. Of 45 respondents screened preconceptionally, 62% (n = 28) planned IVF with PGD or prenatal diagnosis (PNDx) in future pregnancies. Twenty-nine percent (n = 13) were not planning to alter reproductive decisions. The remaining 9% (n = 4) of responses were unclear. Of 19 pregnant respondents, 42% (n = 8) elected PNDx, 11% (n = 2) planned amniocentesis but miscarried, and 47% (n = 9) considered the condition insufficiently severe to warrant invasive testing. Of the 8 pregnancies that underwent PNDx, 5 were unaffected and 3 were affected. Two of 3 affected pregnancies were terminated. Disease severity was found to have significant association (p = 0.000145) with changes in decision making, whereas guideline status of diseases, controlled for severity, was not (p = 0.284). Most ARC altered reproductive planning, demonstrating the clinical utility of ECS. Severity of conditions factored into decision making.


Subject(s)
Genetic Carrier Screening/methods , Reproductive Behavior/psychology , Spouses/psychology , Adaptation, Psychological , Decision Making , Female , Genes, Recessive , Humans , Infertility/psychology , Male , Pregnancy , Prenatal Diagnosis/psychology , Retrospective Studies
12.
PLoS Genet ; 13(9): e1006915, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28957316

ABSTRACT

Do the frequencies of disease mutations in human populations reflect a simple balance between mutation and purifying selection? What other factors shape the prevalence of disease mutations? To begin to answer these questions, we focused on one of the simplest cases: recessive mutations that alone cause lethal diseases or complete sterility. To this end, we generated a hand-curated set of 417 Mendelian mutations in 32 genes reported to cause a recessive, lethal Mendelian disease. We then considered analytic models of mutation-selection balance in infinite and finite populations of constant sizes and simulations of purifying selection in a more realistic demographic setting, and tested how well these models fit allele frequencies estimated from 33,370 individuals of European ancestry. In doing so, we distinguished between CpG transitions, which occur at a substantially elevated rate, and three other mutation types. Intriguingly, the observed frequency for CpG transitions is slightly higher than expectation but close, whereas the frequencies observed for the three other mutation types are an order of magnitude higher than expected, with a bigger deviation from expectation seen for less mutable types. This discrepancy is even larger when subtle fitness effects in heterozygotes or lethal compound heterozygotes are taken into account. In principle, higher than expected frequencies of disease mutations could be due to widespread errors in reporting causal variants, compensation by other mutations, or balancing selection. It is unclear why these factors would have a greater impact on disease mutations that occur at lower rates, however. We argue instead that the unexpectedly high frequency of disease mutations and the relationship to the mutation rate likely reflect an ascertainment bias: of all the mutations that cause recessive lethal diseases, those that by chance have reached higher frequencies are more likely to have been identified and thus to have been included in this study. Beyond the specific application, this study highlights the parameters likely to be important in shaping the frequencies of Mendelian disease alleles.


Subject(s)
Genes, Lethal/genetics , Genetic Diseases, Inborn/genetics , Genetics, Population , Selection, Genetic/genetics , Gene Frequency , Genes, Recessive , Heterozygote , Humans , Models, Genetic , Mutation
13.
Prenat Diagn ; 37(5): 482-490, 2017 May.
Article in English | MEDLINE | ID: mdl-28317136

ABSTRACT

OBJECTIVE: Performance of noninvasive prenatal screening (NIPS) methodologies when applied to low fetal fraction samples is not well established. The single-nucleotide polymorphism (SNP) method fails samples below a predetermined fetal fraction threshold, whereas some laboratories employing the whole-genome sequencing (WGS) method report aneuploidy calls for all samples. Here, the performance of the two methods was compared to determine which approach actually detects more fetal aneuploidies. METHODS: Computational models were parameterized with up-to-date published data and used to compare the performance of the two methods at calling common fetal trisomies (T21, T18, T13) at low fetal fractions. Furthermore, clinical experience data were reviewed to determine aneuploidy detection rates based on compliance with recent invasive screening recommendations. RESULTS: The SNP method's performance is dependent on the origin of the trisomy, and is lowest for the most common trisomies (maternal M1 nondisjunction). Consequently, the SNP method cannot maintain acceptable performance at fetal fractions below ~3%. In contrast, the WGS method maintains high specificity independent of fetal fraction and has >80% sensitivity for trisomies in low fetal fraction samples. CONCLUSION: The WGS method will detect more aneuploidies below the fetal fraction threshold at which many labs issue a no-call result, avoiding unnecessary invasive procedures. © 2017 Counsyl Inc. Prenatal Diagnosis published by John Wiley & Sons, Ltd.


Subject(s)
DNA Mutational Analysis/methods , Fetus/chemistry , High-Throughput Nucleotide Sequencing/methods , Limit of Detection , Microarray Analysis/methods , Polymorphism, Single Nucleotide , Prenatal Diagnosis/methods , DNA/analysis , Female , Fetus/metabolism , Genetic Testing , Genome, Human , Humans , Male , Pregnancy , Sensitivity and Specificity
14.
PeerJ ; 5: e3046, 2017.
Article in English | MEDLINE | ID: mdl-28243543

ABSTRACT

The past two decades have brought many important advances in our understanding of the hereditary susceptibility to cancer. Numerous studies have provided convincing evidence that identification of germline mutations associated with hereditary cancer syndromes can lead to reductions in morbidity and mortality through targeted risk management options. Additionally, advances in gene sequencing technology now permit the development of multigene hereditary cancer testing panels. Here, we describe the 2016 revision of the Counsyl Inherited Cancer Screen for detecting single-nucleotide variants (SNVs), short insertions and deletions (indels), and copy number variants (CNVs) in 36 genes associated with an elevated risk for breast, ovarian, colorectal, gastric, endometrial, pancreatic, thyroid, prostate, melanoma, and neuroendocrine cancers. To determine test accuracy and reproducibility, we performed a rigorous analytical validation across 341 samples, including 118 cell lines and 223 patient samples. The screen achieved 100% test sensitivity across different mutation types, with high specificity and 100% concordance with conventional Sanger sequencing and multiplex ligation-dependent probe amplification (MLPA). We also demonstrated the screen's high intra-run and inter-run reproducibility and robust performance on blood and saliva specimens. Furthermore, we showed that pathogenic Alu element insertions can be accurately detected by our test. Overall, the validation in our clinical laboratory demonstrated the analytical performance required for collecting and reporting genetic information related to risk of developing hereditary cancers.

15.
Prenat Diagn ; 37(4): 350-355, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28166604

ABSTRACT

OBJECTIVE: To tabulate individual allele frequencies and total carrier frequency for Smith-Lemli-Opitz syndrome (SLOS) and compare expected versus observed birth incidences. METHODS: A total of 262 399 individuals with no known indication or increased probability of SLOS carrier status, primarily US based, were screened for SLOS mutations as part of an expanded carrier screening panel. Results were retrospectively analyzed to estimate carrier frequencies in multiple ethnic groups. SLOS birth incidences obtained from existing literature were then compared with these data to estimate the effect of SLOS on fetal survival. RESULTS: Smith-Lemli-Opitz syndrome carrier frequency is highest in Ashkenazi Jews (1 in 43) and Northern Europeans (1 in 54). Comparing predicted birth incidence with that observed in published literature suggests that approximately 42% to 88% of affected conceptuses experience prenatal demise. CONCLUSION: Smith-Lemli-Opitz syndrome is relatively frequent in certain populations and, because of its impact on prenatal and postnatal morbidity and mortality, merits consideration for routine screening. © 2017 The Authors. Prenatal Diagnosis published by John Wiley & Sons, Ltd.


Subject(s)
Genetic Carrier Screening , Smith-Lemli-Opitz Syndrome/diagnosis , Smith-Lemli-Opitz Syndrome/genetics , Smith-Lemli-Opitz Syndrome/mortality , Female , Fetal Mortality , Gene Frequency , Genetic Carrier Screening/methods , Genetic Testing , High-Throughput Nucleotide Sequencing , Humans , Mutation , Polymorphism, Single Nucleotide , Pregnancy , Prenatal Diagnosis/methods , Prenatal Diagnosis/statistics & numerical data , Retrospective Studies , Sequence Analysis, DNA
16.
JAMA ; 316(24): 2675-2676, 2016 12 27.
Article in English | MEDLINE | ID: mdl-28027359
17.
JAMA ; 316(7): 734-42, 2016 Aug 16.
Article in English | MEDLINE | ID: mdl-27533158

ABSTRACT

IMPORTANCE: Screening for carrier status of a limited number of single-gene conditions is the current standard of prenatal care. Methods have become available allowing rapid expanded carrier screening for a substantial number of conditions. OBJECTIVES: To quantify the modeled risk of recessive conditions identifiable by an expanded carrier screening panel in individuals of diverse racial and ethnic backgrounds and to compare the results with those from current screening recommendations. DESIGN, SETTING, AND PARTICIPANTS: Retrospective modeling analysis of results between January 1, 2012, and July 15, 2015, from expanded carrier screening in reproductive-aged individuals without known indication for specific genetic testing, primarily from the United States. Tests were offered by clinicians providing reproductive care. EXPOSURES: Individuals were tested for carrier status for up to 94 severe or profound conditions. MAIN OUTCOMES AND MEASURES: Risk was defined as the probability that a hypothetical fetus created from a random pairing of individuals (within or across 15 self-reported racial/ethnic categories; there were 11 categories with >5000 samples) would be homozygous or compound heterozygous for 2 mutations presumed to cause severe or profound disease. Severe conditions were defined as those that if left untreated cause intellectual disability or a substantially shortened lifespan; profound conditions were those causing both. RESULTS: The study included 346,790 individuals. Among major US racial/ethnic categories, the calculated frequency of fetuses potentially affected by a profound or severe condition ranged from 94.5 per 100,000 (95% CI, 82.4-108.3 per 100,000) for Hispanic couples to 392.2 per 100,000 (95% CI, 366.3-420.2 per 100,000) for Ashkenazi Jewish couples. In most racial/ethnic categories, expanded carrier screening modeled more hypothetical fetuses at risk for severe or profound conditions than did screening based on current professional guidelines (Mann-Whitney P < .001). For Northern European couples, the 2 professional guidelines-based screening panels modeled 55.2 hypothetical fetuses affected per 100,000 (95% CI, 51.3-59.3 per 100,000) and the expanded carrier screening modeled 159.2 fetuses per 100,000 (95% CI, 150.4-168.6 per 100,000). Overall, relative to expanded carrier screening, guideline-based screening ranged from identification of 6% (95% CI, 4%-8%) of hypothetical fetuses affected for East Asian couples to 87% (95% CI, 84%-90%) for African or African American couples. CONCLUSIONS AND RELEVANCE: In a population of diverse races and ethnicities, expanded carrier screening may increase the detection of carrier status for a variety of potentially serious genetic conditions compared with current recommendations from professional societies. Prospective studies comparing current standard-of-care carrier screening with expanded carrier screening in at-risk populations are warranted before expanded screening is adopted.


Subject(s)
Fetal Diseases/genetics , Genetic Carrier Screening/methods , Genetic Diseases, Inborn/diagnosis , Asian People/genetics , Black People/genetics , Female , Fetal Diseases/diagnosis , Genetic Diseases, Inborn/ethnology , Genetic Diseases, Inborn/genetics , Genetic Testing/methods , Genetic Testing/statistics & numerical data , Genotyping Techniques/methods , Heterozygote , Hispanic or Latino/genetics , Homozygote , Humans , Indians, North American/genetics , Jews/genetics , Male , Retrospective Studies , Statistics, Nonparametric , United States/ethnology , White People/genetics
18.
Clin Chem ; 62(10): 1401-8, 2016 10.
Article in English | MEDLINE | ID: mdl-27540028

ABSTRACT

BACKGROUND: Fragile X syndrome (FXS, OMIM #300624) is an X-linked condition caused by trinucleotide repeat expansions in the 5' UTR (untranslated region) of the fragile X mental retardation 1 (FMR1) gene. FXS testing is commonly performed in expanded carrier screening and has been proposed for inclusion in newborn screening. However, because pathogenic alleles are long and have low complexity (>200 CGG repeats), FXS is currently tested by a single-plex electrophoresis-resolved PCR assay rather than multiplexed approaches like next-generation sequencing or mass spectrometry. In this work, we sought an experimental design based on nonadaptive group testing that could accurately and reliably identify the size of abnormally expanded FMR1 alleles of males and females. METHODS: We developed a new group testing scheme named StairCase (SC) that was designed to the constraints of the FXS testing problem, and compared its performance to existing group testing schemes by simulation. We experimentally evaluated SC's performance on 210 samples from the Coriell Institute biorepositories using pooled PCR followed by capillary electrophoresis on 3 replicates of each of 3 pooling layouts differing by the mapping of samples to pools. RESULTS: The SC pooled PCR approach demonstrated perfect classification of samples by clinical category (normal, intermediate, premutation, or full mutation) for 90 positives and 1800 negatives, with a batch of 210 samples requiring only 21 assays. CONCLUSIONS: Group testing based on SC is an implementable approach to trinucleotide repeat expansion disorder testing that offers ≥10-fold reduction in assay costs over current single-plex methods.


Subject(s)
Fragile X Syndrome/genetics , Genetic Testing/methods , Trinucleotide Repeat Expansion/genetics , Female , Genetic Testing/economics , Humans , Male , Polymerase Chain Reaction
20.
Genet Test Mol Biomarkers ; 20(9): 504-9, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27362553

ABSTRACT

BACKGROUND AND AIMS: Carrier screening for Tay-Sachs disease is performed by sequence analysis of the HEXA gene and/or hexosaminidase A enzymatic activity testing. Enzymatic analysis (EA) has been suggested as the optimal carrier screening method, especially in non-Ashkenazi Jewish (non-AJ) individuals, but its utilization and efficacy have not been fully evaluated in the general population. This study assesses the reliability of EA in comparison with HEXA sequence analysis in non-AJ populations. METHODS: Five hundred eight Hispanic and African American patients (516 samples) had EA of their leukocytes performed and 12 of these patients who tested positive by EA ("carriers") had subsequent HEXA gene sequencing performed. RESULTS: Of the 508 patients, 25 (4.9%) were EA positive and 40 (7.9%) were inconclusive. Of the 12 patients who were sequenced, 11 did not carry a pathogenic variant and one carried a likely deleterious mutation (NM_000520.4(HEXA):c.1510C>T). CONCLUSIONS: High inconclusive rates and poor correlation between positive/inconclusive enzyme results and identification of pathogenic mutations suggest that ethnic-specific recalibration of reference ranges for EA may be necessary. Alternatively, HEXA gene sequencing could be performed.


Subject(s)
Enzyme Assays/methods , Genetic Carrier Screening/methods , Tay-Sachs Disease/enzymology , Tay-Sachs Disease/genetics , beta-Hexosaminidase alpha Chain/genetics , beta-Hexosaminidase alpha Chain/metabolism , Black or African American/genetics , Ethnicity/genetics , Genetic Testing/methods , Heterozygote , Hispanic or Latino/genetics , Humans , Jews/genetics , Mutation , New York City/epidemiology , Reproducibility of Results , Sequence Analysis, DNA , Tay-Sachs Disease/diagnosis , Tay-Sachs Disease/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL