Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Rep (Hoboken) ; 7(1): e1948, 2024 01.
Article in English | MEDLINE | ID: mdl-38062981

ABSTRACT

BACKGROUND: The growing complexity of cancer has made it a significant concern in the medical community. Although cancer research has advanced, it is still challenging to create new effective medications due to the limitations and side effects of existing treatment strategies. These are enforcing the development of some alternative drugs from natural compounds with fewer drawbacks and side effects. AIM: Therefore, this review aims to provide up-to-date, crucial, and all-encompassing data on esculetin's anticancer activity, including all relevant molecular and cellular processes based on in vivo and in vitro investigations. RESULTS: According to the literature review, esculetin is available in nature and is effective against 16 different types of cancer. The general mechanism shown by esculetin is modulating signaling cascades and its related pathways, like cell proliferation, cell growth, autophagy, apoptosis, necrosis, inflammation, angiogenesis, metastasis, invasion, and DNA damage. Nanoformulation of esculetin improves this natural product's efficacy by improving water solubility. Esculetin's synergistic effects with both natural substances and conventional treatments have been shown, and this method aids in reversing resistance mechanisms by modulating resistance-related proteins. In addition, it has fewer side effects on humans than other phytochemicals and standard drugs with some good pharmacokinetic features. CONCLUSION: Therefore, until standard chemotherapeutics are available in pharmaceutical markets, esculetin should be used as a therapeutic drug against various cancer types.


Subject(s)
Neoplasms , Humans , Neoplasms/drug therapy , Umbelliferones/pharmacology , Apoptosis , Signal Transduction
2.
Front Immunol ; 13: 931021, 2022.
Article in English | MEDLINE | ID: mdl-35860264

ABSTRACT

Toll-like receptors (TLRs) are epitomized as the first line of defense against pathogens. Amongst TLRs, TLR22 is expressed in non-mammalian aquatic vertebrates, including fish. Using headkidney macrophages (HKM) of Clarias gariepinus, we reported the pro-apoptotic and microbicidal role of TLR22 in Aeromonas hydrophila infection. Mitochondria act as a central scaffold in the innate immune system. However, the precise molecular mechanisms underlying TLR22 signaling and mitochondrial involvement in A. hydrophila-pathogenesis remain unexplored in fish. The aim of the present study was to investigate the nexus between TLR22 and mitochondria in pro-apoptotic immune signaling circuitry in A. hydrophila-infected HKM. We report that TLR22-induced mitochondrial-Ca2+ [Ca2+]mt surge is imperative for mtROS production in A. hydrophila-infected HKM. Mitigating mtROS production enhanced intracellular bacterial replication implicating its anti-microbial role in A. hydrophila-pathogenesis. Enhanced mtROS triggers hif1a expression leading to prolonged chop expression. CHOP prompts mitochondrial unfolded protein response (UPRmt) leading to the enhanced expression of mitochondrial fission marker dnml1, implicating mitochondrial fission in A. hydrophila pathogenesis. Inhibition of mitochondrial fission reduced HKM apoptosis and increased the bacterial burden. Additionally, TLR22-mediated alterations in mitochondrial architecture impair mitochondrial function (ΔΨm loss and cytosolic accumulation of cyt c), which in turn activates caspase-9/caspase-3 axis in A. hydrophila-infected HKM. Based on these findings we conclude that TLR22 prompts mtROS generation, which activates the HIF-1α/CHOP signalosome triggering UPRmt-induced mitochondrial fragmentation culminating in caspase-9/-3-mediated HKM apoptosis and bacterial clearance.


Subject(s)
Aeromonas hydrophila , Catfishes , Animals , Caspase 9/metabolism , Macrophages , Mitochondrial Dynamics , Toll-Like Receptors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL