Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Med Chem ; 66(2): 1484-1508, 2023 01 26.
Article in English | MEDLINE | ID: mdl-36630286

ABSTRACT

With increasing reports of resistance to artemisinins and artemisinin-combination therapies, targeting the Plasmodium proteasome is a promising strategy for antimalarial development. We recently reported a highly selective Plasmodium falciparum proteasome inhibitor with anti-malarial activity in the humanized mouse model. To balance the permeability of the series of macrocycles with other drug-like properties, we conducted further structure-activity relationship studies on a biphenyl ether-tethered macrocyclic scaffold. Extensive SAR studies around the P1, P3, and P5 groups and peptide backbone identified compound TDI-8414. TDI-8414 showed nanomolar antiparasitic activity, no toxicity to HepG2 cells, high selectivity against the Plasmodium proteasome over the human constitutive proteasome and immunoproteasome, improved solubility and PAMPA permeability, and enhanced metabolic stability in microsomes and plasma of both humans and mice.


Subject(s)
Antimalarials , Plasmodium , Humans , Animals , Mice , Antimalarials/pharmacology , Antimalarials/chemistry , Proteasome Endopeptidase Complex/metabolism , Structure-Activity Relationship , Plasmodium falciparum/metabolism , Proteasome Inhibitors/pharmacology , Proteasome Inhibitors/chemistry
2.
J Med Chem ; 65(13): 9350-9375, 2022 07 14.
Article in English | MEDLINE | ID: mdl-35727231

ABSTRACT

With over 200 million cases and close to half a million deaths each year, malaria is a threat to global health, particularly in developing countries. Plasmodium falciparum, the parasite that causes the most severe form of the disease, has developed resistance to all antimalarial drugs. Resistance to the first-line antimalarial artemisinin and to artemisinin combination therapies is widespread in Southeast Asia and is emerging in sub-Saharan Africa. The P. falciparum proteasome is an attractive antimalarial target because its inhibition kills the parasite at multiple stages of its life cycle and restores artemisinin sensitivity in parasites that have become resistant through mutation in Kelch K13. Here, we detail our efforts to develop noncovalent, macrocyclic peptide malaria proteasome inhibitors, guided by structural analysis and pharmacokinetic properties, leading to a potent, species-selective, metabolically stable inhibitor.


Subject(s)
Antimalarials , Artemisinins , Malaria, Falciparum , Antimalarials/pharmacology , Antimalarials/therapeutic use , Artemisinins/pharmacology , Drug Resistance , Humans , Malaria, Falciparum/drug therapy , Peptides/therapeutic use , Plasmodium falciparum , Proteasome Inhibitors/pharmacology , Proteasome Inhibitors/therapeutic use , Protozoan Proteins/genetics
3.
Nat Commun ; 12(1): 4847, 2021 08 11.
Article in English | MEDLINE | ID: mdl-34381031

ABSTRACT

Circulating phosphate levels are tightly controlled within a narrow range in mammals. By using a novel small-molecule inhibitor, we show that the enzymatic activity of inositol hexakisphosphate kinases (IP6K) is essential for phosphate regulation in vivo. IP6K inhibition suppressed XPR1, a phosphate exporter, thereby decreasing cellular phosphate export, which resulted in increased intracellular ATP levels. The in vivo inhibition of IP6K decreased plasma phosphate levels without inhibiting gut intake or kidney reuptake of phosphate, demonstrating a pivotal role of IP6K-regulated cellular phosphate export on circulating phosphate levels. IP6K inhibition-induced decrease in intracellular inositol pyrophosphate, an enzymatic product of IP6K, was correlated with phosphate changes. Chronic IP6K inhibition alleviated hyperphosphataemia, increased kidney ATP, and improved kidney functions in chronic kidney disease rats. Our results demonstrate that the enzymatic activity of IP6K regulates circulating phosphate and intracellular ATP and suggest that IP6K inhibition is a potential novel treatment strategy against hyperphosphataemia.


Subject(s)
Phosphates/blood , Phosphotransferases (Phosphate Group Acceptor)/metabolism , Adenosine Triphosphate/metabolism , Animals , Biological Transport/drug effects , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Homeostasis/drug effects , Humans , Hyperphosphatemia/drug therapy , Inositol Phosphates/metabolism , Mammals , Phosphates/metabolism , Phosphotransferases (Phosphate Group Acceptor)/antagonists & inhibitors , Rats , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Receptors, Virus/genetics , Receptors, Virus/metabolism , Renal Insufficiency, Chronic/drug therapy , Xenotropic and Polytropic Retrovirus Receptor
4.
J Med Chem ; 64(9): 6262-6272, 2021 05 13.
Article in English | MEDLINE | ID: mdl-33949190

ABSTRACT

Treatment of tuberculosis (TB) currently takes at least 6 months. Latent Mycobacterium tuberculosis (Mtb) is phenotypically tolerant to most anti-TB drugs. A key hypothesis is that drugs that kill nonreplicating (NR) Mtb may shorten treatment when used in combination with conventional drugs. The Mtb proteasome (Mtb20S) could be such a target because its pharmacological inhibition kills NR Mtb and its genetic deletion renders Mtb unable to persist in mice. Here, we report a series of macrocyclic peptides that potently and selectively target the Mtb20S over human proteasomes, including macrocycle 6. The cocrystal structure of macrocycle 6 with Mtb20S revealed structural bases for the species selectivity. Inhibition of 20S within Mtb by 6 dose dependently led to the accumulation of Pup-tagged GFP that is degradable but resistant to depupylation and death of nonreplicating Mtb under nitrosative stress. These results suggest that compounds of this class have the potential to develop as anti-TB therapeutics.


Subject(s)
Mycobacterium tuberculosis/enzymology , Peptides, Cyclic/pharmacology , Proteasome Endopeptidase Complex/metabolism , Proteasome Inhibitors/chemistry , Proteasome Inhibitors/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Drug Design , Humans , Mycobacterium tuberculosis/drug effects , Peptides, Cyclic/chemistry , Structure-Activity Relationship
5.
Angew Chem Int Ed Engl ; 60(17): 9279-9283, 2021 04 19.
Article in English | MEDLINE | ID: mdl-33433953

ABSTRACT

Plasmodium falciparum proteasome (Pf20S) inhibitors are active against Plasmodium at multiple stages-erythrocytic, gametocyte, liver, and gamete activation stages-indicating that selective Pf20S inhibitors possess the potential to be therapeutic, prophylactic, and transmission-blocking antimalarials. Starting from a reported compound, we developed a noncovalent, macrocyclic peptide inhibitor of the malarial proteasome with high species selectivity and improved pharmacokinetic properties. The compound demonstrates specific, time-dependent inhibition of the ß5 subunit of the Pf20S, kills artemisinin-sensitive and artemisinin-resistant P. falciparum isolates in vitro and reduces parasitemia in humanized, P. falciparum-infected mice.


Subject(s)
Antimalarials/pharmacology , Drug Development , Malaria, Falciparum/drug therapy , Plasmodium falciparum/drug effects , Proteasome Endopeptidase Complex/metabolism , Proteasome Inhibitors/pharmacology , Animals , Antimalarials/chemical synthesis , Antimalarials/chemistry , Malaria, Falciparum/metabolism , Mice , Models, Molecular , Molecular Conformation , Parasitic Sensitivity Tests , Plasmodium falciparum/enzymology , Proteasome Inhibitors/chemical synthesis , Proteasome Inhibitors/chemistry
6.
J Med Chem ; 62(20): 9246-9253, 2019 10 24.
Article in English | MEDLINE | ID: mdl-31560200

ABSTRACT

Proteasomes of pathogenic microbes have become attractive targets for anti-infectives. Coevolving with its human host, Mycobacterium tuberculosis (Mtb) has developed mechanisms to resist host-imposed nitrosative and oxidative stresses. Genetic deletion or pharmacological inhibition of the Mtb proteasome (Mtb20S) renders nonreplicating Mtb susceptible to reactive nitrogen species in vitro and unable to survive in the lungs of mice, validating the Mtb proteasome as a promising target for anti-Mtb agents. Using a structure-guided and flow chemistry-enabled study of structure-activity relationships, we developed phenylimidazole-based peptidomimetics that are highly potent for Mtb20S. X-ray structures of selected compounds with Mtb20S shed light on their selectivity for mycobacterial over human proteasomes.


Subject(s)
Imidazoles/pharmacology , Mycobacterium tuberculosis/drug effects , Proteasome Inhibitors/pharmacology , Imidazoles/chemistry , Microbial Sensitivity Tests , Mycobacterium tuberculosis/enzymology , Proteasome Inhibitors/chemistry , Reactive Nitrogen Species/metabolism , Structure-Activity Relationship
7.
ACS Pharmacol Transl Sci ; 2(6): 387-401, 2019 Dec 13.
Article in English | MEDLINE | ID: mdl-32259072

ABSTRACT

The integrin αVß3 receptor has been implicated in several important diseases, but no antagonists are approved for human therapy. One possible limitation of current small-molecule antagonists is their ability to induce a major conformational change in the receptor that induces it to adopt a high-affinity ligand-binding state. In response, we used structural inferences from a pure peptide antagonist to design the small-molecule pure antagonists TDI-4161 and TDI-3761. Both compounds inhibit αVß3-mediated cell adhesion to αVß3 ligands, but do not induce the conformational change as judged by antibody binding, electron microscopy, X-ray crystallography, and receptor priming studies. Both compounds demonstrated the favorable property of inhibiting bone resorption in vitro, supporting potential value in treating osteoporosis. Neither, however, had the unfavorable property of the αVß3 antagonist cilengitide of paradoxically enhancing aortic sprout angiogenesis at concentrations below its IC50, which correlates with cilengitide's enhancement of tumor growth in vivo.

8.
Proc Natl Acad Sci U S A ; 115(29): E6863-E6870, 2018 07 17.
Article in English | MEDLINE | ID: mdl-29967165

ABSTRACT

We describe noncovalent, reversible asparagine ethylenediamine (AsnEDA) inhibitors of the Plasmodium falciparum proteasome (Pf20S) ß5 subunit that spare all active subunits of human constitutive and immuno-proteasomes. The compounds are active against erythrocytic, sexual, and liver-stage parasites, against parasites resistant to current antimalarials, and against P. falciparum strains from patients in Africa. The ß5 inhibitors synergize with a ß2 inhibitor in vitro and in mice and with artemisinin. P. falciparum selected for resistance to an AsnEDA ß5 inhibitor surprisingly harbored a point mutation in the noncatalytic ß6 subunit. The ß6 mutant was resistant to the species-selective Pf20S ß5 inhibitor but remained sensitive to the species-nonselective ß5 inhibitors bortezomib and carfilzomib. Moreover, resistance to the Pf20S ß5 inhibitor was accompanied by increased sensitivity to a Pf20S ß2 inhibitor. Finally, the ß5 inhibitor-resistant mutant had a fitness cost that was exacerbated by irradiation. Thus, used in combination, multistage-active inhibitors of the Pf20S ß5 and ß2 subunits afford synergistic antimalarial activity with a potential to delay the emergence of resistance to artemisinins and each other.


Subject(s)
Antimalarials/chemistry , Plasmodium falciparum/enzymology , Proteasome Endopeptidase Complex/chemistry , Proteasome Inhibitors/chemistry , Protozoan Proteins/antagonists & inhibitors , Artemisinins/chemistry , Bortezomib/chemistry , Drug Resistance, Microbial , Humans , Lactones/chemistry , Oligopeptides/chemistry , Protozoan Proteins/chemistry
9.
J Med Chem ; 60(21): 8963-8981, 2017 11 09.
Article in English | MEDLINE | ID: mdl-29023121

ABSTRACT

The discovery and optimization of Δ-5 desaturase (D5D) inhibitors are described. Investigation of the 1,3-oxazolidin-2-one scaffold was inspired by a pharmacophore model constructed from the common features of several hit compounds, resulting in the identification of 3,5-diphenyl-1,3-oxazolidin-2-one 5h as a novel lead showing potent in vitro activity. Subsequent optimization focused on the modification of two metabolic sites, which provided (4S,5S)-5i, a derivative with improved metabolic stability. Moreover, adding a substituent into the upper phenyl moiety further enhanced the intrinsic activity, which led to the discovery of 5-[(4S,5S)-5-(4fluorophenyl)-4-methyl-2-oxo-1,3-oxazolidin-3-yl]benzene-1,3-dicarbonitrile (4S,5S)-5n, endowed with excellent D5D binding affinity, cellular activity, and high oral bioavailability in a mouse. It exhibited robust in vivo hepatic arachidonic acid/dihomo-γ-linolenic acid ratio reduction (a target engagement marker) in an atherosclerosis mouse model. Finally, an asymmetric synthetic procedure for this compound was established.


Subject(s)
Fatty Acid Desaturases/antagonists & inhibitors , Oxazolidinones/pharmacology , Administration, Oral , Animals , Arachidonic Acid/metabolism , Atherosclerosis/drug therapy , Biological Availability , Delta-5 Fatty Acid Desaturase , Drug Discovery/methods , Liver/metabolism , Mice , Oxazolidinones/chemical synthesis , Oxazolidinones/metabolism , Oxazolidinones/pharmacokinetics , Structure-Activity Relationship
10.
J Med Chem ; 55(5): 2353-66, 2012 Mar 08.
Article in English | MEDLINE | ID: mdl-22309223

ABSTRACT

It was found that 3-(aminomethyl)quinoline derivatives showed high binding affinities for melanin-concentrating hormone receptor 1 (MCHR1) with reduced affinity for serotonin receptor 2c (5-HT2c) when the dihydronaphthalene nucleus of compound 1 (human MCHR1, IC(50) = 1.9 nM; human 5-HT2c receptor, IC(50) = 0.53 nM) was replaced by other bicyclic core scaffolds. Among the synthesized compounds, 8-methylquinoline derivative 5v especially showed high binding affinity (IC(50) = 0.54 nM), potent in vitro antagonistic activity (IC(50) = 2.8 nM) for MCHR1, and negligible affinity for 5-HT2c receptor (IC(50) > 1000 nM). Oral administration of 5v significantly and dose-dependently suppressed nocturnal food intake in diet-induced obese rats and did not affect food intake in MCHR1-deficient mice. These results and rat pharmacokinetic study findings suggested that compound 5v is a highly potent, orally bioavailable, and centrally acting nonpeptide MCHR1 antagonist.


Subject(s)
Anti-Obesity Agents/chemical synthesis , Benzamides/chemical synthesis , Quinolines/chemical synthesis , Receptors, Somatostatin/antagonists & inhibitors , Administration, Oral , Animals , Anti-Obesity Agents/pharmacokinetics , Anti-Obesity Agents/pharmacology , Benzamides/pharmacokinetics , Benzamides/pharmacology , Biological Availability , Eating/drug effects , Humans , Mice , Mice, Knockout , Quinolines/pharmacokinetics , Quinolines/pharmacology , Rats , Receptor, Serotonin, 5-HT2C/metabolism , Receptors, Somatostatin/genetics , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...