Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Hear Res ; 407: 108292, 2021 08.
Article in English | MEDLINE | ID: mdl-34214947

ABSTRACT

The use of explosive devices in war and terrorism has increased exposure to concussive blasts among both military personnel and civilians, which can cause permanent hearing and balance deficits that adversely affect survivors' quality of life. Significant knowledge gaps on the underlying etiology of blast-induced hearing loss and balance disorders remain, especially with regard to the effect of blast exposure on the vestibular system, the impact of multiple blast exposures, and long-term recovery. To address this, we investigated the effects of blast exposure on the inner ear using a mouse model in conjunction with a high-fidelity blast simulator. Anesthetized animals were subjected to single or triple blast exposures, and physiological measurements and tissue were collected over the course of recovery for up to 180 days. Auditory brainstem responses (ABRs) indicated significantly elevated thresholds across multiple frequencies. Limited recovery was observed at low frequencies in single-blasted mice. Distortion Product Otoacoustic Emissions (DPOAEs) were initially absent in all blast-exposed mice, but low-amplitude DPOAEs could be detected at low frequencies in some single-blast mice by 30 days post-blast, and in some triple-blast mice at 180 days post-blast. All blast-exposed mice showed signs of Tympanic Membrane (TM) rupture immediately following exposure and loss of outer hair cells (OHCs) in the basal cochlear turn. In contrast, the number of Inner Hair Cells (IHCs) and spiral ganglion neurons was unchanged following blast-exposure. A significant reduction in IHC pre-synaptic puncta was observed in the upper turns of blast-exposed cochleae. Finally, we found no significant loss of utricular hair cells or changes in vestibular function as assessed by vestibular evoked potentials. Our results suggest that (1) blast exposure can cause severe, long-term hearing loss which may be partially due to slow TM healing or altered mechanical properties of healed TMs, (2) traumatic levels of sound can still reach the inner ear and cause basal OHC loss despite middle ear dysfunction caused by TM rupture, (3) blast exposure may result in synaptopathy in humans, and (4) balance deficits after blast exposure may be primarily due to traumatic brain injury, rather than damage to the peripheral vestibular system.


Subject(s)
Hearing Loss , Otoacoustic Emissions, Spontaneous , Animals , Auditory Threshold , Evoked Potentials, Auditory, Brain Stem , Hair Cells, Auditory, Outer , Quality of Life , Vestibular System
2.
NPJ Aging Mech Dis ; 6: 1, 2020.
Article in English | MEDLINE | ID: mdl-31934345

ABSTRACT

Age-related hearing loss (ARHL) is one of the most common disorders affecting elderly individuals. There is an urgent need for effective preventive measures for ARHL because none are currently available. Cockayne syndrome (CS) is a premature aging disease that presents with progressive hearing loss at a young age, but is otherwise similar to ARHL. There are two human genetic complementation groups of CS, A and B. While the clinical phenotypes in patients are similar, the proteins have very diverse functions, and insight into their convergence is of great interest. Here, we use mouse models for CS (CSA -/- and CSB m/m ) that recapitulate the hearing loss in human CS patients. We previously showed that NAD+, a key metabolite with various essential functions, is reduced in CS and associated with multiple CS phenotypes. In this study, we report that NAD+ levels are reduced in the cochlea of CSB m/m mice and that short-term treatment (10 days) with the NAD+ precursor nicotinamide riboside (NR), prevents hearing loss, restores outer hair cell loss, and improves cochlear health in CSB m/m mice. Similar, but more modest effects were observed in CSA -/- mice. Remarkably, we observed a reduction in synaptic ribbon counts in the presynaptic zones of inner hair cells in both CSA -/- and CSB m/m mice, pointing to a converging mechanism for cochlear defects in CS. Ribbon synapses facilitate rapid and sustained synaptic transmission over long periods of time. Ribeye, a core protein of synaptic ribbons, possesses an NAD(H) binding pocket which regulates its activity. Intriguingly, NAD+ supplementation rescues reduced synaptic ribbon formation in both CSA -/- and CSB m/m mutant cochleae. These findings provide valuable insight into the mechanism of CS- and ARHL-associated hearing loss, and suggest a possible intervention.

SELECTION OF CITATIONS
SEARCH DETAIL