Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Odontology ; 112(1): 177-184, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37432500

ABSTRACT

Detection of the oral bacterium Fusobacterium nucleatum in colorectal cancer tissues suggests that periodontitis may alter gut microbiota. The purpose of this study was to analyze the influence and infection route of periodontal inflammation caused by F. nucleatum, and microbiota of the gut and surrounding organs (heart, liver, kidney). Wistar female rats were orally inoculated with F. nucleatum to establish an experimental periodontitis model that was confirmed by X-ray imaging and histopathological analysis. The mandibles, gut, liver, heart, and kidneys were collected from the experimental group at 2, 4, and 8 weeks, and from the uninfected control group at 0 weeks, for DNA extraction for PCR amplification and comprehensive microbiota analysis using the Illumina MiSeq platform. Imaging confirmed the onset of periodontitis at 2 weeks post-inoculation, and histopathology showed inflammatory cell infiltration from 2 to 8 weeks. PCR and comprehensive microbiota analysis showed the presence of F. nucleatum in the heart and liver at 2 weeks, and in the liver at 4 and 8 weeks. There were changes of microbiota of the gut, heart, liver, and kidneys at 4 weeks: namely, decreased Verrucomicrobia and Bacteroidetes, and increased Firmicutes. F. nucleatum induced the onset of periodontitis and infected the heart and liver in rats. As the periodontic lesion progressed, the microbiota of the gut, liver, heart, and kidneys were altered.


Subject(s)
Microbiota , Periodontitis , Female , Rats , Animals , Fusobacterium nucleatum , Rats, Wistar , Periodontitis/microbiology , Inflammation
2.
J Endod ; 48(8): 1038-1045, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35545147

ABSTRACT

INTRODUCTION: Fusobacterium nucleatum, which is involved in the development of periodontal disease and apical lesions, can be transmitted to the colon and metastasize to colorectal cancer, suggesting a link between oral and systemic diseases. We analyzed the effects of F. nucleatum on bacterial flora in the gut and surrounding organs in a rat model of apical periodontitis and analyzed the infection route to the gut and distant organs. METHODS: We induced apical periodontitis in rat molars by infecting the dental pulp with F. nucleatum and then took X-ray images and performed histopathologic analyses. Next, we removed the maxilla, gut, heart, liver, and kidney from the rats at 0, 2, 4, and 8 weeks postsurgery and then extracted DNA samples and performed polymerase chain reaction and microbiome analyses using the Illumina MiSeq (Illumina Co, Tokyo, Japan). RESULTS: The presence of inflammatory cell infiltration confirmed apical periodontitis from 2-8 weeks. Polymerase chain reaction and microbiome analyses revealed F. nucleatum in the rat gut from 2 weeks and in the kidney from 8 weeks. The rat gut, heart, liver, and kidney exhibited altered bacterial flora, including a marked decrease in Verrucomicrobia and an increase in Proteobacteria after 2 weeks and increases in Bacteroidetes and Firmicutes after 4 weeks. CONCLUSIONS: The onset of F. nucleatum-induced apical periodontitis changed the bacterial flora in the rat gut, heart, liver, and kidney, with a confirmed progressing infection in the large intestines.


Subject(s)
Fusobacterium Infections , Gastrointestinal Microbiome , Periapical Periodontitis , Animals , Fusobacterium Infections/complications , Fusobacterium Infections/genetics , Fusobacterium Infections/microbiology , Fusobacterium nucleatum , Periapical Periodontitis/microbiology , Rats
3.
J Biol Chem ; 286(44): 38115-38127, 2011 Nov 04.
Article in English | MEDLINE | ID: mdl-21896480

ABSTRACT

Porphyromonas gingivalis and Porphyromonas endodontalis, asaccharolytic black-pigmented anaerobes, are predominant pathogens of human chronic and periapical periodontitis, respectively. They incorporate di- and tripeptides from the environment as carbon and energy sources. In the present study we cloned a novel dipeptidyl peptidase (DPP) gene of P. endodontalis ATCC 35406, designated as DPP11. The DPP11 gene encoded 717 amino acids with a molecular mass of 81,090 Da and was present as a 75-kDa form with an N terminus of Asp(22). A homology search revealed the presence of a P. gingivalis orthologue, PGN0607, that has been categorized as an isoform of authentic DPP7. P. gingivalis DPP11 was exclusively cell-associated as a truncated 60-kDa form, and the gene ablation retarded cell growth. DPP11 specifically removed dipeptides from oligopeptides with the penultimate N-terminal Asp and Glu and has a P2-position preference to hydrophobic residues. Optimum pH was 7.0, and the k(cat)/K(m) value was higher for Asp than Glu. Those activities were lost by substitution of Ser(652) in P. endodontalis and Ser(655) in P. gingivalis DPP11 to Ala, and they were consistently decreased with increasing NaCl concentration. Arg(670) is a unique amino acid completely conserved in all DPP11 members distributed in the genera Porphyromonas, Bacteroides, and Parabacteroides, whereas this residue is converted to Gly in all authentic DPP7 members. Substitution analysis suggested that Arg(670) interacts with an acidic residue of the substrate. Considered to preferentially utilize acidic amino acids, DPP11 ensures efficient degradation of oligopeptide substrates in these Gram-negative anaerobic rods.


Subject(s)
Aspartic Acid/chemistry , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/metabolism , Glutamic Acid/chemistry , Porphyromonas gingivalis/enzymology , Amino Acid Sequence , Base Sequence , Cloning, Molecular , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/chemistry , Gene Expression Regulation, Bacterial , Humans , Hydrogen-Ion Concentration , Molecular Sequence Data , Polymerase Chain Reaction , Protein Structure, Tertiary , Proteins/metabolism , Recombinant Proteins/chemistry , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL