Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
BMC Cancer ; 23(1): 738, 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37563628

ABSTRACT

BACKGROUND: Genetic screening for pathogenic variants (PVs) in cancer predisposition genes can affect treatment strategies, risk prediction and preventive measures for patients and families. For decades, hereditary breast and ovarian cancer (HBOC) has been attributed to PVs in the genes BRCA1 and BRCA2, and more recently other rare alleles have been firmly established as associated with a high or moderate increased risk of developing breast and/or ovarian cancer. Here, we assess the genetic variation and tumor characteristics in a large cohort of women with suspected HBOC in a clinical oncogenetic setting. METHODS: Women with suspected HBOC referred from all oncogenetic clinics in Sweden over a six-year inclusion period were screened for PVs in 13 clinically relevant genes. The genetic outcome was compared with tumor characteristics and other clinical data collected from national cancer registries and hospital records. RESULTS: In 4622 women with breast and/or ovarian cancer the overall diagnostic yield (the proportion of women carrying at least one PV) was 16.6%. BRCA1/2 PVs were found in 8.9% of women (BRCA1 5.95% and BRCA2 2.94%) and PVs in the other breast and ovarian cancer predisposition genes in 8.2%: ATM (1.58%), BARD1 (0.45%), BRIP1 (0.43%), CDH1 (0.11%), CHEK2 (3.46%), PALB2 (0.84%), PTEN (0.02%), RAD51C (0.54%), RAD51D (0.15%), STK11 (0) and TP53 (0.56%). Thus, inclusion of the 11 genes in addition to BRCA1/2 increased diagnostic yield by 7.7%. The yield was, as expected, significantly higher in certain subgroups such as younger patients, medullary breast cancer, higher Nottingham Histologic Grade, ER-negative breast cancer, triple-negative breast cancer and high grade serous ovarian cancer. Age and tumor subtype distributions differed substantially depending on genetic finding. CONCLUSIONS: This study contributes to understanding the clinical and genetic landscape of breast and ovarian cancer susceptibility. Extending clinical genetic screening from BRCA1 and BRCA2 to 13 established cancer predisposition genes almost doubles the diagnostic yield, which has implications for genetic counseling and clinical guidelines. The very low yield in the syndrome genes CDH1, PTEN and STK11 questions the usefulness of including these genes on routine gene panels.


Subject(s)
Breast Neoplasms , Hereditary Breast and Ovarian Cancer Syndrome , Ovarian Neoplasms , Triple Negative Breast Neoplasms , Humans , Female , BRCA1 Protein/genetics , BRCA2 Protein/genetics , Genetic Predisposition to Disease , Breast Neoplasms/diagnosis , Breast Neoplasms/genetics , Genetic Testing , Ovarian Neoplasms/diagnosis , Ovarian Neoplasms/genetics , Protein Serine-Threonine Kinases/genetics , Triple Negative Breast Neoplasms/genetics , Hereditary Breast and Ovarian Cancer Syndrome/diagnosis , Hereditary Breast and Ovarian Cancer Syndrome/genetics , Germ-Line Mutation
2.
Protein Eng Des Sel ; 23(2): 91-101, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19959567

ABSTRACT

Chemotaxis inhibitory protein of Staphylococcus aureus (CHIPS) is a protein that binds and blocks the C5a receptor (C5aR) and formylated peptide receptor, thereby inhibiting the immune cell recruitment associated with inflammation. If CHIPS was less reactive with existing human antibodies, it would be a promising anti-inflammatory drug candidate. Therefore, we applied directed evolution and computational/rational design to the CHIPS gene in order to generate new CHIPS variants displaying lower interaction with human IgG, yet retaining biological function. The optimization was performed in four rounds: one round of random mutagenesis to add diversity into the CHIPS gene and three rounds of DNA recombination by Fragment INduced Diversity (FIND). Every round was screened by phage selection and/or ELISA for decreased interaction with human IgG and retained C5aR binding. The mean binding of human anti-CHIPS IgG decreased with every round of evolution. For further optimization, new amino acid substitutions were introduced by rational design, based on the mutations identified during directed evolution. Finally, seven CHIPS variants with low interaction with human IgG and retained C5aR blocking capacity could be identified.


Subject(s)
Bacterial Proteins/genetics , Bacterial Proteins/immunology , Directed Molecular Evolution , Immunoglobulin G/immunology , Receptor, Anaphylatoxin C5a/antagonists & inhibitors , Staphylococcus aureus/immunology , Amino Acid Sequence , Bacterial Proteins/analysis , Bacterial Proteins/pharmacology , Cell Line , Drug Design , Gene Expression , Humans , Models, Molecular , Molecular Sequence Data , Neutrophils/drug effects , Neutrophils/metabolism , Receptor, Anaphylatoxin C5a/metabolism , Recombinant Proteins/analysis , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Recombinant Proteins/pharmacology , Sequence Alignment , Staphylococcus aureus/genetics
3.
Protein Expr Purif ; 63(2): 95-101, 2009 Feb.
Article in English | MEDLINE | ID: mdl-18950716

ABSTRACT

The Chemotaxis Inhibitory Protein of Staphylococcus aureus (CHIPS) binds and blocks the C5a receptor (C5aR) and formyl-peptide receptor (FPR). This way, CHIPS is a potent inhibitor of the immune cell recruitment associated with inflammation. Truncation of the protein and the introduction of mutations, shifts the expression towards the insoluble fraction of Escherichia coli, whereas the wild-type protein can be solubly expressed. A protocol for expression and tag independent purification of biologically active CHIPS variants has been established to enable further characterization of an improved CHIPS variant, called ADC-1004. The CHIPS variants were purified by washing of E. coli inclusion bodies followed by refolding and gel filtration. New techniques were utilized to optimize the purification process. Expression in inclusion bodies was increased by the use of Ultra Yield flasks and optimal refolding conditions were determined by the use of the iFOLD Refolding System 2. The folding and biological activity of the purified proteins were analyzed by circular dichroism (CD) spectroscopy and flow cytometry, respectively, and compared to solubly produced CHIPS(31-113) and wild-type CHIPS(1-121). We show that the CHIPS variants produced in inclusion bodies can be refolded and purified to achieve equal biological activity as solubly produced CHIPS(31-113) and wild-type CHIPS(1-121). The truncation causes minor structural changes while purification from inclusion bodies or the soluble fraction does not further affect the structure.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/isolation & purification , Bacterial Proteins/biosynthesis , Bacterial Proteins/isolation & purification , Staphylococcus aureus , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Escherichia coli/genetics , Genetic Vectors , Inclusion Bodies/chemistry , Inclusion Bodies/metabolism , Protein Folding
4.
Neoplasia ; 6(5): 541-5, 2004.
Article in English | MEDLINE | ID: mdl-15548363

ABSTRACT

The etiology and pathogenesis of male breast cancer (MBC) are poorly known. This is due to the fact that the disease is rare, and large-scale genetic epidemiologic studies have been difficult to carry out. Here, we studied the frequency of eight recurrent Finnish BRCA2 founder mutations in a large cohort of 154 MBC patients (65% diagnosed in Finland from 1967 to 1996). Founder mutations were detected in 10 patients (6.5%), eight of whom carried the 9346(-2) A>G mutation. Two novel mutations (4075 delGT and 5808 del5) were discovered in a screening of the entire BRCA2 coding region in 34 samples. However, these mutations were not found in the rest of the 120 patients studied. Patients with positive family history of breast and/or ovarian cancer were often BRCA2 mutation carriers (44%), whereas those with no family history showed a low frequency of involvement (3.6%; P < .0001). Finally, we found only one Finnish MBC patient with 999 del5, the most common founder mutation in Finnish female breast cancer (FBC) patients, and one that explains most of the hereditary FBC and MBC cases in Iceland. The variation in BRCA2 mutation spectrum between Finnish MBC patients and FBC patients in Finland and breast cancer patients in Iceland suggests that modifying genetic and environmental factors may significantly influence the penetrance of MBC and FBC in individuals carrying germline BRCA2 mutations in some populations.


Subject(s)
Breast Neoplasms, Male/genetics , Genes, BRCA2 , Mutation/genetics , Aged , Aged, 80 and over , Breast Neoplasms, Male/ethnology , Finland , Founder Effect , Gene Frequency/genetics , Humans , Male , Middle Aged
5.
Hum Mutat ; 21(5): 553-4, 2003 May.
Article in English | MEDLINE | ID: mdl-12673801

ABSTRACT

Sixty high-risk breast and/or ovarian cancer families from North-Eastern Poland were screened for germline mutations in BRCA1 (MIM# 113705) and BRCA2 (MIM# 600185), using a combination of protein truncation test, denaturing high-performance liquid chromatography and direct sequencing. Sixteen (27%) of the families were found to carry nine different BRCA mutations, including 14 families with BRCA1 mutation and two families with BRCA2 mutation. The results suggest the presence of two strong BRCA1 founder mutations in the Polish population - 5382insC (6 families) and 300T>G (Cys61Gly; 3 families). The remaining seven mutations were found in single families and included three previously reported BRCA1 mutations (185delAG, 2682C>T [Gln855Ter] and 3819del5), a novel BRCA1 mutation (IVS14+1G>A), as well as two BRCA2 mutations (4088delA and 7985G>A [Trp2586Ter]) not previously observed in Polish families. We confirm the strong influence of two Central-Eastern European BRCA1 founder mutations in familial breast and/or ovarian cancer in Poland. We also conclude that the Polish population has a more dispersed BRCA mutation spectrum than had been earlier thought. This warrants further careful BRCA mutation screening in order to optimise genetic counselling and disease prevention in affected families.


Subject(s)
BRCA1 Protein/genetics , BRCA2 Protein/genetics , Breast Neoplasms/genetics , Ovarian Neoplasms/genetics , Adult , Aged , DNA Mutational Analysis , DNA, Neoplasm/chemistry , DNA, Neoplasm/genetics , Family Health , Female , Humans , Middle Aged , Mutagenesis, Insertional , Pedigree , Point Mutation , Poland , Sequence Deletion
6.
Hum Genet ; 110(2): 111-21, 2002 Feb.
Article in English | MEDLINE | ID: mdl-11935316

ABSTRACT

Chromosomal region 13q21-q22 harbors a putative breast cancer susceptibility gene and has been implicated as a common site for somatic deletions in a variety of malignant tumors. We have built a complete physical clone contig for a region between D13S1308 and AFM220YE9 based on 18 yeast artificial chromosome and 81 bacterial artificial chromosome (BAC) clones linked together by 22 genetic markers and 61 other sequence tagged sites. Combining data from 47 sequenced BACs (as of June 2001), we have assembled in silico an integrated 5.7-Mb genomic map with 90% sequence coverage. This area contains eight known genes, two hypothetical proteins, 24 additional Unigene clusters, and approximately 100 predicted genes and exons. We have determined the cDNA and genomic sequence, and tissue expression profiles for the KIAA1008 protein (homologous to the yeast mitotic control protein dis3+), KLF12 (AP-2 repressor), progesterone induced blocking factor 1, zinc finger transcription factor KLF5, and LIM domain only-7, and for the hypothetical proteins FLJ22624 and FLJ21869. Mutation screening of the five known genes in 19 breast cancer families has revealed numerous polymorphisms, but no deleterious mutations. These data provide a basis and resources for further analyses of this chromosomal region in the development of cancer.


Subject(s)
Breast Neoplasms/genetics , Chromosomes, Human, Pair 13 , Transcription Factors/genetics , Base Sequence , Chromosome Mapping , Cloning, Molecular , DNA Primers , DNA, Complementary , Exons , Female , Finland , Genes, BRCA1 , Genes, BRCA2 , Genetic Markers , Homeodomain Proteins , Humans , Iceland , In Situ Hybridization, Fluorescence , Introns , Kruppel-Like Transcription Factors , LIM Domain Proteins , Molecular Sequence Data , Polymerase Chain Reaction , Sweden , Transcription, Genetic , Zinc Fingers
SELECTION OF CITATIONS
SEARCH DETAIL
...