Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Biologicals ; 86: 101753, 2024 May.
Article in English | MEDLINE | ID: mdl-38492418

ABSTRACT

Biopharmaceutical manufacturing processes may include a low pH treatment step as a means of inactivating enveloped viruses. Small scale virus clearance studies are routinely performed using model enveloped viruses such as murine leukemia virus to assess inactivation at the pH range used in the downstream manufacturing process. Further, as a means of bioburden reduction, chromatography resins may be cleaned and stored using sodium hydroxide and this can also inactivate viruses. The susceptibility of SARS-CoV-2 and SARS-CoV to low pH conditions using protein A eluate derived material from a monoclonal antibody production process as well as high pH cleaning conditions was addressed. SARS-CoV-2 was effectively inactivated at pH 3.0, moderately inactivated at pH 3.4, but not inactivated at pH 3.8. Low pH was less effective at inactivating SARS-CoV. Both viruses were inactivated at a high pH of ca.13.4. These studies provide important information regarding the effectiveness of viral clearance and inactivation steps of novel coronaviruses when compared to other enveloped viruses.


Subject(s)
Antibodies, Monoclonal , SARS-CoV-2 , Severe acute respiratory syndrome-related coronavirus , Virus Inactivation , Hydrogen-Ion Concentration , SARS-CoV-2/drug effects , Virus Inactivation/drug effects , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/isolation & purification , Humans , Staphylococcal Protein A/chemistry , Animals , COVID-19/virology , Chlorocebus aethiops , Vero Cells
2.
J Virol ; 98(4): e0010224, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38470058

ABSTRACT

The transmembrane serine protease 2 (TMPRSS2) activates the outer structural proteins of a number of respiratory viruses including influenza A virus (IAV), parainfluenza viruses, and various coronaviruses for membrane fusion. Previous studies showed that TMPRSS2 interacts with the carboxypeptidase angiotensin-converting enzyme 2 (ACE2), a cell surface protein that serves as an entry receptor for some coronaviruses. Here, by using protease activity assays, we determine that ACE2 increases the enzymatic activity of TMPRSS2 in a non-catalytic manner. Furthermore, we demonstrate that ACE2 knockdown inhibits TMPRSS2-mediated cleavage of IAV hemagglutinin (HA) in Calu-3 human airway cells and suppresses virus titers 100- to 1.000-fold. Transient expression of ACE2 in ACE2-deficient cells increased TMPRSS2-mediated HA cleavage and IAV replication. ACE2 knockdown also reduced titers of MERS-CoV and prevented S cleavage by TMPRSS2 in Calu-3 cells. By contrast, proteolytic activation and multicycle replication of IAV with multibasic HA cleavage site typically cleaved by furin were not affected by ACE2 knockdown. Co-immunoprecipitation analysis revealed that ACE2-TMPRSS2 interaction requires the enzymatic activity of TMPRSS2 and the carboxypeptidase domain of ACE2. Together, our data identify ACE2 as a new co-factor or stabilizer of TMPRSS2 activity and as a novel host cell factor involved in proteolytic activation and spread of IAV in human airway cells. Furthermore, our data indicate that ACE2 is involved in the TMPRSS2-catalyzed activation of additional respiratory viruses including MERS-CoV.IMPORTANCEProteolytic cleavage of viral envelope proteins by host cell proteases is essential for the infectivity of many viruses and relevant proteases provide promising drug targets. The transmembrane serine protease 2 (TMPRSS2) has been identified as a major activating protease of several respiratory viruses, including influenza A virus. TMPRSS2 was previously shown to interact with angiotensin-converting enzyme 2 (ACE2). Here, we report the mechanistic details of this interaction. We demonstrate that ACE2 increases or stabilizes the enzymatic activity of TMPRSS2. Furthermore, we describe ACE2 involvement in TMPRSS2-catalyzed cleavage of the influenza A virus hemagglutinin and MERS-CoV spike protein in human airway cells. These findings expand our knowledge of the activation of respiratory viruses by TMPRSS2 and the host cell factors involved. In addition, our results could help to elucidate a physiological role for TMPRSS2.


Subject(s)
Angiotensin-Converting Enzyme 2 , Influenza A virus , Lung , Proteolysis , Serine Endopeptidases , Animals , Dogs , Humans , Angiotensin-Converting Enzyme 2/deficiency , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Biocatalysis , Cell Line , Furin/metabolism , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Influenza A virus/growth & development , Influenza A virus/metabolism , Lung/cytology , Lung/virology , Middle East Respiratory Syndrome Coronavirus/metabolism , Protein Binding , Serine Endopeptidases/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization , Virus Replication
3.
Eur J Med Chem ; 238: 114437, 2022 Aug 05.
Article in English | MEDLINE | ID: mdl-35635944

ABSTRACT

A rational structure-based approach was employed to develop novel 3-amidinophenylalanine-derived matriptase inhibitors with improved selectivity against thrombin and factor Xa. Of all 23 new derivatives, several monobasic inhibitors exhibit high matriptase affinities and strong selectivity against thrombin. Some inhibitors also possess selectivity against factor Xa, although less pronounced as found for thrombin. A crystal structure of a selective monobasic matriptase inhibitor in complex with matriptase and three crystal structures of related compounds in trypsin and thrombin have been determined. The structures offer an explanation for the different selectivity profiles of these inhibitors and contribute to a more detailed understanding of the observed structure-activity relationship. Selected compounds were tested in vitro against a matriptase-dependent H9N2 influenza virus strain and demonstrated a concentration-dependent inhibition of virus replication in MDCK(II) cells.


Subject(s)
Factor Xa , Influenza A Virus, H9N2 Subtype , Phenylalanine/chemistry , Factor Xa/metabolism , Factor Xa Inhibitors/pharmacology , Influenza A Virus, H9N2 Subtype/metabolism , Serine Endopeptidases , Serine Proteinase Inhibitors/chemistry , Serine Proteinase Inhibitors/pharmacology , Structure-Activity Relationship , Thrombin
4.
J Virol ; 95(20): e0090621, 2021 09 27.
Article in English | MEDLINE | ID: mdl-34319155

ABSTRACT

Cleavage of the influenza A virus (IAV) hemagglutinin (HA) by host proteases is indispensable for virus replication. Most IAVs possess a monobasic HA cleavage site cleaved by trypsin-like proteases. Previously, the transmembrane protease TMPRSS2 was shown to be essential for proteolytic activation of IAV HA subtypes H1, H2, H7, and H10 in mice. In contrast, additional proteases are involved in activation of certain H3 IAVs, indicating that HAs with monobasic cleavage sites can differ in their sensitivity to host proteases. Here, we investigated the role of TMPRSS2 in proteolytic activation of avian HA subtypes H1 to H11 and H14 to H16 in human and mouse airway cell cultures. Using reassortant viruses carrying representative HAs, we analyzed HA cleavage and multicycle replication in (i) lung cells of TMPRSS2-deficient mice and (ii) Calu-3 cells and primary human bronchial cells subjected to morpholino oligomer-mediated knockdown of TMPRSS2 activity. TMPRSS2 was found to be crucial for activation of H1 to H11, H14, and H15 in airway cells of human and mouse. Only H9 with an R-S-S-R cleavage site and H16 were proteolytically activated in the absence of TMPRSS2 activity, albeit with reduced efficiency. Moreover, a TMPRSS2-orthologous protease from duck supported activation of H1 to H11, H15, and H16 in MDCK cells. Together, our data demonstrate that in human and murine respiratory cells, TMPRSS2 is the major activating protease of almost all IAV HA subtypes with monobasic cleavage sites. Furthermore, our results suggest that TMPRSS2 supports activation of IAV with a monobasic cleavage site in ducks. IMPORTANCE Human infections with avian influenza A viruses upon exposure to infected birds are frequently reported and have received attention as a potential pandemic threat. Cleavage of the envelope glycoprotein hemagglutinin (HA) by host proteases is a prerequisite for membrane fusion and essential for virus infectivity. In this study, we identify the transmembrane protease TMPRSS2 as the major activating protease of avian influenza virus HAs of subtypes H1 to H11, H14 and H15 in human and murine airway cells. Our data demonstrate that inhibition of TMPRSS2 activity may provide a useful approach for the treatment of human infections with avian influenza viruses that should be considered for pandemic preparedness as well. Additionally, we show that a TMPRSS2-orthologous protease from duck can activate avian influenza virus HAs with a monobasic cleavage site and, thus, represents a potential virus-activating protease in waterfowl, the primary reservoir for influenza A viruses.


Subject(s)
Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Influenza A virus/metabolism , Serine Endopeptidases/metabolism , Animals , Bronchi/cytology , Cell Line , Dogs , Female , HEK293 Cells , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinins, Viral/genetics , Hemagglutinins, Viral/metabolism , Host-Pathogen Interactions , Humans , Influenza A Virus, H1N1 Subtype/physiology , Influenza A Virus, H3N2 Subtype/physiology , Influenza A virus/immunology , Influenza A virus/pathogenicity , Lung/virology , Madin Darby Canine Kidney Cells , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Peptide Hydrolases/metabolism , Proteolysis , Respiratory Mucosa/metabolism , Serine Endopeptidases/physiology , Virus Replication
5.
J Biol Chem ; 295(33): 11388-11407, 2020 08 14.
Article in English | MEDLINE | ID: mdl-32303635

ABSTRACT

Cleavage of influenza virus hemagglutinin (HA) by host proteases is essential for virus infectivity. HA of most influenza A and B (IAV/IBV) viruses is cleaved at a monobasic motif by trypsin-like proteases. Previous studies have reported that transmembrane serine protease 2 (TMPRSS2) is essential for activation of H7N9 and H1N1pdm IAV in mice but that H3N2 IAV and IBV activation is independent of TMPRSS2 and carried out by as-yet-undetermined protease(s). Here, to identify additional H3 IAV- and IBV-activating proteases, we used RNA-Seq to investigate the protease repertoire of murine lower airway tissues, primary type II alveolar epithelial cells (AECIIs), and the mouse lung cell line MLE-15. Among 13 candidates identified, TMPRSS4, TMPRSS13, hepsin, and prostasin activated H3 and IBV HA in vitro IBV activation and replication was reduced in AECIIs from Tmprss2/Tmprss4-deficient mice compared with WT or Tmprss2-deficient mice, indicating that murine TMPRSS4 is involved in IBV activation. Multicycle replication of H3N2 IAV and IBV in AECIIs of Tmprss2/Tmprss4-deficient mice varied in sensitivity to protease inhibitors, indicating that different, but overlapping, sets of murine proteases facilitate H3 and IBV HA cleavages. Interestingly, human hepsin and prostasin orthologs did not activate H3, but they did activate IBV HA in vitro Our results indicate that TMPRSS4 is an IBV-activating protease in murine AECIIs and suggest that TMPRSS13, hepsin, and prostasin cleave H3 and IBV HA in mice. They further show that hepsin and prostasin orthologs might contribute to the differences observed in TMPRSS2-independent activation of H3 in murine and human airways.


Subject(s)
Influenza A Virus, H3N2 Subtype/physiology , Influenza B virus/physiology , Influenza, Human/enzymology , Orthomyxoviridae Infections/enzymology , Peptide Hydrolases/metabolism , Virus Activation , Animals , Cell Line , Dogs , Enzyme Activation/drug effects , Gene Expression Profiling , HEK293 Cells , Host-Pathogen Interactions/drug effects , Humans , Influenza A Virus, H3N2 Subtype/drug effects , Influenza B virus/drug effects , Influenza, Human/drug therapy , Influenza, Human/genetics , Influenza, Human/virology , Lung/enzymology , Lung/metabolism , Lung/virology , Madin Darby Canine Kidney Cells , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Orthomyxoviridae Infections/drug therapy , Orthomyxoviridae Infections/genetics , Orthomyxoviridae Infections/virology , Peptide Hydrolases/genetics , Protease Inhibitors/pharmacology , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Virus Activation/drug effects
6.
J Virol ; 93(21)2019 11 01.
Article in English | MEDLINE | ID: mdl-31391268

ABSTRACT

Cleavage of influenza virus hemagglutinin (HA) by host cell proteases is essential for virus infectivity and spread. We previously demonstrated in vitro that the transmembrane protease TMPRSS2 cleaves influenza A virus (IAV) and influenza B virus (IBV) HA possessing a monobasic cleavage site. Subsequent studies revealed that TMPRSS2 is crucial for the activation and pathogenesis of H1N1pdm and H7N9 IAV in mice. In contrast, activation of H3N2 IAV and IBV was found to be independent of TMPRSS2 expression and supported by an as-yet-undetermined protease(s). Here, we investigated the role of TMPRSS2 in proteolytic activation of IAV and IBV in three human airway cell culture systems: primary human bronchial epithelial cells (HBEC), primary type II alveolar epithelial cells (AECII), and Calu-3 cells. Knockdown of TMPRSS2 expression was performed using a previously described antisense peptide-conjugated phosphorodiamidate morpholino oligomer, T-ex5, that interferes with splicing of TMPRSS2 pre-mRNA, resulting in the expression of enzymatically inactive TMPRSS2. T-ex5 treatment produced efficient knockdown of active TMPRSS2 in all three airway cell culture models and prevented proteolytic activation and multiplication of H7N9 IAV in Calu-3 cells and H1N1pdm, H7N9, and H3N2 IAV in HBEC and AECII. T-ex5 treatment also inhibited the activation and spread of IBV in AECII but did not affect IBV activation in HBEC and Calu-3 cells. This study identifies TMPRSS2 as the major HA-activating protease of IAV in human airway cells and IBV in type II pneumocytes and as a potential target for the development of novel drugs to treat influenza infections.IMPORTANCE Influenza A viruses (IAV) and influenza B viruses (IBV) cause significant morbidity and mortality during seasonal outbreaks. Cleavage of the viral surface glycoprotein hemagglutinin (HA) by host proteases is a prerequisite for membrane fusion and essential for virus infectivity. Inhibition of relevant proteases provides a promising therapeutic approach that may avoid the development of drug resistance. HA of most influenza viruses is cleaved at a monobasic cleavage site, and a number of proteases have been shown to cleave HA in vitro This study demonstrates that the transmembrane protease TMPRSS2 is the major HA-activating protease of IAV in primary human bronchial cells and of both IAV and IBV in primary human type II pneumocytes. It further reveals that human and murine airway cells can differ in their HA-cleaving protease repertoires. Our data will help drive the development of potent and selective protease inhibitors as novel drugs for influenza treatment.


Subject(s)
Influenza A virus/physiology , Influenza B virus/physiology , Influenza, Human/virology , Serine Endopeptidases/metabolism , Animals , Bronchi/cytology , Cells, Cultured , Epithelial Cells/virology , Gene Knockdown Techniques , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Host-Pathogen Interactions , Humans , Influenza, Human/enzymology , Influenza, Human/metabolism , Mice , Orthomyxoviridae Infections/enzymology , Orthomyxoviridae Infections/metabolism , Orthomyxoviridae Infections/virology , Pulmonary Alveoli/cytology , Serine Endopeptidases/genetics , Up-Regulation , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL
...