Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; : e2405065, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38838331

ABSTRACT

Epitaxial growth of thin-film heterostructures is generally considered the most successful procedure to obtain interfaces of excellent structural and electronic quality between 3D materials. However, these interfaces can only join material systems with crystal lattices of matching symmetries and lattice constants. This article presents a novel category of interfaces, the fabrication of which is membrane-based and does not require epitaxial growth. These interfaces therefore overcome the limitations imposed by epitaxy. Leveraging the additional degrees of freedom gained, atomically clean interfaces are demonstrated between threefold symmetric sapphire and fourfold symmetric SrTiO3. Atomic-resolution imaging reveals structurally well-defined interfaces with a novel moiré-type reconstruction.

2.
Proc Natl Acad Sci U S A ; 121(4): e2314454121, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38232283

ABSTRACT

The discoveries of ferromagnetism down to the atomically thin limit in van der Waals (vdW) crystals by mechanical exfoliation have enriched the family of magnetic thin films [C. Gong et al., Nature 546, 265-269 (2017) and B. Huang et al., Nature 546, 270-273 (2017)]. However, compared to the study of traditional magnetic thin films by physical deposition methods, the toolbox of the vdW crystals based on mechanical exfoliation and transfer suffers from low yield and ambient corrosion problem and now is facing new challenges to study magnetism. For example, the formation of magnetic superlattice is difficult in vdW crystals, which limits the study of the interlayer interaction in vdW crystals [M. Gibertini, M. Koperski, A. F. Morpurgo, K. S. Novoselov, Nat. Nanotechnol. 14, 408-419 (2019)]. Here, we report a strategy of interlayer engineering of the magnetic vdW crystal Fe3GeTe2 (FGT) by intercalating quaternary ammonium cations into the vdW spacing. Both three-dimensional (3D) vdW superlattice and two-dimensional (2D) vdW monolayer can be formed by using this method based on the amount of intercalant. On the one hand, the FGT superlattice shows a strong 3D critical behavior with a decreased coercivity and increased domain wall size, attributed to the co-engineering of the anisotropy, exchange interaction, and electron doping by intercalation. On the other hand, the 2D vdW few layers obtained by over-intercalation are capped with organic molecules from the bulk crystal, which not only enhances the ferromagnetic transition temperature (TC), but also substantially protects the thin samples from degradation, thus allowing the preparation of large-scale FGT ink in ambient environment.

3.
Adv Mater ; 35(17): e2210562, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36739113

ABSTRACT

Despite extensive studies on size effects in ferroelectrics, how structures and properties evolve in antiferroelectrics with reduced dimensions still remains elusive. Given the enormous potential of utilizing antiferroelectrics for high-energy-density storage applications, understanding their size effects will provide key information for optimizing device performances at small scales. Here, the fundamental intrinsic size dependence of antiferroelectricity in lead-free NaNbO3 membranes is investigated. Via a wide range of experimental and theoretical approaches, an intriguing antiferroelectric-to-ferroelectric transition upon reducing membrane thickness is probed. This size effect leads to a ferroelectric single-phase below 40 nm, as well as a mixed-phase state with ferroelectric and antiferroelectric orders coexisting above this critical thickness. Furthermore, it is shown that the antiferroelectric and ferroelectric orders are electrically switchable. First-principle calculations further reveal that the observed transition is driven by the structural distortion arising from the membrane surface. This work provides direct experimental evidence for intrinsic size-driven scaling in antiferroelectrics and demonstrates enormous potential of utilizing size effects to drive emergent properties in environmentally benign lead-free oxides with the membrane platform.

4.
Adv Mater ; 35(10): e2210989, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36585838

ABSTRACT

The exploration of crystalline nanostructures enhances the understanding of quantum phenomena occurring in spatially confined quantum matter and may lead to functional materials with unforeseen applications. A novel route to fabricating nanocrystalline oxide structures of exceptional quality is presented. This is achieved by utilizing a self-assembly process of ultrathin membranes composed of the desired oxide. The thermally induced self-assembly of nanocrystalline structures is driven by dewetting the oxide membranes once they are lifted off and transferred onto sapphire surfaces. In three successive steps, the process provides nanovoids, nanowires, and nanocrystals. Regardless of substrate orientation, the nanostructures are highly anisotropic in shape due to material retraction favoring low-index crystalline lattice directions of the membranes. The orientation of the nanostructures is provided precisely by the crystal lattice of the transferred membrane. The microstructure of the nanocrystals exhibits exceptional quality, characterized by a pristine crystal structure and uniform stoichiometry, both maintained all the way down to the well-developed crystalline facets. The demonstrated self-assembly process holds the potential to improve the understanding of surface diffusion phenomena at the interface of materials, which is important for advancing epitaxial growth technology and paves the way to fabricating crystalline nanostructures by the transfer and self-assembly of membranes.

5.
Nano Lett ; 21(6): 2470-2475, 2021 03 24.
Article in English | MEDLINE | ID: mdl-33689379

ABSTRACT

Young's modulus determines the mechanical loads required to elastically stretch a material and also the loads required to bend it, given that bending stretches one surface while compressing the opposite one. Flexoelectric materials have the additional property of becoming electrically polarized when bent. The associated energy cost can additionally contribute to elasticity via strain gradients, particularly at small length scales where they are geometrically enhanced. Here, we present nanomechanical measurements of freely suspended SrTiO3 crystalline membrane drumheads. We observe an unexpected nonmonotonic thickness dependence of Young's modulus upon small deflections. Furthermore, the modulus inferred from a predominantly bending deformation is three times larger than that of a predominantly stretching deformation for membranes thinner than 20 nm. In this regime we extract a strain gradient elastic coupling of ∼2.2 µN, which could be used in new operational regimes of nanoelectro-mechanics.

6.
Nat Commun ; 11(1): 3141, 2020 Jun 19.
Article in English | MEDLINE | ID: mdl-32561835

ABSTRACT

Advances in complex oxide heteroepitaxy have highlighted the enormous potential of utilizing strain engineering via lattice mismatch to control ferroelectricity in thin-film heterostructures. This approach, however, lacks the ability to produce large and continuously variable strain states, thus limiting the potential for designing and tuning the desired properties of ferroelectric films. Here, we observe and explore dynamic strain-induced ferroelectricity in SrTiO3 by laminating freestanding oxide films onto a stretchable polymer substrate. Using a combination of scanning probe microscopy, optical second harmonic generation measurements, and atomistic modeling, we demonstrate robust room-temperature ferroelectricity in SrTiO3 with 2.0% uniaxial tensile strain, corroborated by the notable features of 180° ferroelectric domains and an extrapolated transition temperature of 400 K. Our work reveals the enormous potential of employing oxide membranes to create and enhance ferroelectricity in environmentally benign lead-free oxides, which hold great promise for applications ranging from non-volatile memories and microwave electronics.

7.
Science ; 368(6486): 71-76, 2020 04 03.
Article in English | MEDLINE | ID: mdl-32241944

ABSTRACT

A defining feature of emergent phenomena in complex oxides is the competition and cooperation between ground states. In manganites, the balance between metallic and insulating phases can be tuned by the lattice; extending the range of lattice control would enhance the ability to access other phases. We stabilized uniform extreme tensile strain in nanoscale La0.7Ca0.3MnO3 membranes, exceeding 8% uniaxially and 5% biaxially. Uniaxial and biaxial strain suppresses the ferromagnetic metal at distinctly different strain values, inducing an insulator that can be extinguished by a magnetic field. Electronic structure calculations indicate that the insulator consists of charge-ordered Mn4+ and Mn3+ with staggered strain-enhanced Jahn-Teller distortions within the plane. This highly tunable strained membrane approach provides a broad opportunity to design and manipulate correlated electron states.

SELECTION OF CITATIONS
SEARCH DETAIL
...