Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
ACS Appl Bio Mater ; 3(11): 7858-7864, 2020 Nov 16.
Article in English | MEDLINE | ID: mdl-35019526

ABSTRACT

The opioid epidemic in the United States is a serious public health crisis affecting over 1.7 million Americans. In the last two decades, almost 450 000 people have died from an opioid overdose, with nearly 20% of these deaths occurring in 2017 and 2018 alone. During an overdose, overstimulation of the µ-opioid receptor leads to severe and potentially fatal respiratory depression. Naloxone is a competitive µ-opioid-receptor antagonist that is widely used to displace opioids and rescue from an overdose. Here, we describe the development of a slow-release, subcutaneous naloxone formulation for potential management of opioid overdose, chronic pain, and opioid-induced constipation. Naloxone is loaded into self-assembling peptide hydrogels for controlled drug release. The mechanical, chemical, and structural properties of the nanofibrous hydrogel enable subcutaneous administration and slow, diffusion-based release kinetics of naloxone over 30 days in vitro. The naloxone hydrogel scaffold showed cytocompatibility and did not alter the ß-sheet secondary structure or thixotropic properties characteristic of self-assembling peptide hydrogels. Our results show that this biocompatible and injectable self-assembling peptide hydrogel may be useful as a vehicle for tunable, sustained release of therapeutic naloxone. This therapy may be particularly suited for preventing renarcotization in patients who refuse additional medical assistance following an overdose.

2.
ACS Appl Bio Mater ; 3(12): 8978-8988, 2020 Dec 21.
Article in English | MEDLINE | ID: mdl-35019574

ABSTRACT

High levels of serum low-density lipoprotein (LDL) cholesterol contribute to atherosclerosis, a key risk factor of cardiovascular diseases. PCSK9 is a circulatory enzyme that downregulates expression of hepatic LDL receptors, concomitantly increasing serum LDL-C. This work investigates a small, self-assembling peptide, EPep2-8, as a peptide inhibitor of PCSK9. EPep2-8 is a multidomain peptide comprising a self-assembling domain, E2, conjugated to a bioactive domain, Pep2-8, previously shown to inhibit PCSK9. The E2 domain facilitates self-assembly of EPep2-8 into long, nanofibrous polymers with an underlying supramolecular ß-sheet secondary structure. Intermolecular interactions between nanofibers drive EPep2-8 to form a thixotropic and cytocompatible hydrogel in aqueous and charge-neutral solutions. These properties enable EPep2-8 to be delivered as an in situ depot for regulation of lipoprotein homeostasis. In surface plasmon resonance studies, EPep2-8 bound specifically to PCSK9 with an apparent, noncovalent, and irreversible dissociation, significantly improving the binding affinity of Pep2-8 alone (KD = 667 ± 48 nM). Increased binding affinity of EPep2-8 is primarily due to the superstoichiometric interaction of the peptide with PCSK9. Promisingly, EPep2-8 retains bioactivity in vitro, engendering dose-dependent uptake of LDL-C in hepatocytes. This mechanism of self-assembly on a target site may be a simple method to improve the affinity of peptide inhibitors.

SELECTION OF CITATIONS
SEARCH DETAIL
...