Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Plant Cell Environ ; 46(7): 2238-2254, 2023 07.
Article in English | MEDLINE | ID: mdl-37157998

ABSTRACT

The highly conserved angiosperm immune receptor HOPZ-ACTIVATED RESISTANCE1 (ZAR1) recognises the activity of diverse pathogen effector proteins by monitoring the ZED1-related kinase (ZRK) family. Understanding how ZAR1 achieves interaction specificity for ZRKs may allow for the expansion of the ZAR1-kinase recognition repertoire to achieve novel pathogen recognition outside of model species. We took advantage of the natural diversity of Arabidopsis thaliana kinases to probe the ZAR1-kinase interaction interface and found that A. thaliana ZAR1 (AtZAR1) can interact with most ZRKs, except ZRK7. We found evidence of alternative splicing of ZRK7, resulting in a protein that can interact with AtZAR1. Despite high sequence conservation of ZAR1, interspecific ZAR1-ZRK pairings resulted in the autoactivation of cell death. We showed that ZAR1 interacts with a greater diversity of kinases than previously thought, while still possessing the capacity for specificity in kinase interactions. Finally, using AtZAR1-ZRK interaction data, we rationally increased ZRK10 interaction strength with AtZAR1, demonstrating the feasibility of the rational design of a ZAR1-interacting kinase. Overall, our findings advance our understanding of the rules governing ZAR1 interaction specificity, with promising future directions for expanding ZAR1 immunodiversity.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Magnoliopsida , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Carrier Proteins/metabolism , Magnoliopsida/metabolism , Phosphotransferases/metabolism , Plant Diseases , Plant Immunity/physiology , Pseudomonas syringae/physiology , Protein Kinases/metabolism
2.
Front Plant Sci ; 13: 945738, 2022.
Article in English | MEDLINE | ID: mdl-36003820

ABSTRACT

Tissue specific promoters are important tools for the precise genetic engineering of crop plants. Four fruit-preferential promoters were examined for their ability to confer a novel fruit trait in transgenic Mexican lime (Citrus aurantifolia). The Ruby transcription factor activates fruit anthocyanin accumulation within Moro blood orange and has been shown to function in activating anthocyanin accumulation in heterologous plant species. Although the CitVO1, CitUNK, SlE8, and PamMybA promoters were previously shown to confer strong fruit-preferential expression in transgenic tomato, they exhibited no detectable expression in transgenic Mexican lime trees. In contrast, the CitWax promoter exhibited high fruit-preferential expression of Ruby, conferring strong anthocyanin accumulation within the fruit juice sac tissue and moderate activity in floral/reproductive tissues. In some of the transgenic trees with high levels of flower and fruit anthocyanin accumulation, juvenile leaves also exhibited purple coloration, but the color disappeared as the leaves matured. We show that the CitWax promoter enables the expression of Ruby to produce anthocyanin colored fruit desired by consumers. The production of this antioxidant metabolite increases the fruits nutritional value and may provide added health benefits.

3.
Microbiol Spectr ; 10(1): e0222021, 2022 02 23.
Article in English | MEDLINE | ID: mdl-35107386

ABSTRACT

Application of lytic bacteriophages is a promising and alternative intervention technology to relieve antibiotic resistance pressure and control bacterial pathogens in the food industry. Despite the increase of produce-associated outbreaks caused by non-O157 Shiga toxin-producing E. coli (STEC) serogroups, the information of phage application on sprouts to mitigate these pathogens is lacking. Therefore, the objective of this study was to characterize a T4-like Escherichia phage vB_EcoM-Sa45lw (or Sa45lw) for the biocontrol potential of STEC O45 on mung bean seeds. Phage Sa45lw belongs to the Tequatrovirus genus under the Myoviridae family and displays a close evolutionary relationship with a STEC O157-infecting phage AR1. Sa45lw contains a long-tail fiber gene (gp37), sharing high genetic similarity with the counterpart of Escherichia phage KIT03, and a unique tail lysozyme (gp5) to distinguish its host range (STEC O157, O45, ATCC 13706, and Salmonella Montevideo and Thompson) from phage KIT03 (O157 and Salmonella enterica). No stx, antibiotic resistance, and lysogenic genes were found in the Sa45lw genome. The phage has a latent period of 27 min with an estimated burst size of 80 PFU/CFU and is stable at a wide range of pH (pH 3 to pH 10.5) and temperatures (-80°C to 50°C). Phage Sa45lw is particularly effective in reducing E. coli O45:H16 both in vitro (MOI = 10) by 5 log and upon application (MOI = 1,000) on the contaminated mung bean seeds for 15 min by 2 log at 25°C. These findings highlight the potential of phage application against non-O157 STEC on sprout seeds. IMPORTANCE Seeds contaminated with foodborne pathogens, such as Shiga toxin-producing E. coli, are the primary sources of contamination in produce and have contributed to numerous foodborne outbreaks. Antibiotic resistance has been a long-lasting issue that poses a threat to human health and the food industry. Therefore, developing novel antimicrobial interventions, such as bacteriophage application, is pivotal to combat these pathogens. This study characterized a lytic bacteriophage Sa45lw as an alternative antimicrobial agent to control pathogenic E. coli on the contaminated mung bean seeds. The phage exhibited antimicrobial effects against both pathogenic E. coli and Salmonella without containing virulent or lysogenic genes that could compromise the safety of phage application. In addition, after 15 min of phage treatment, Sa45lw mitigated E. coli O45:H16 on the contaminated mung bean seeds by a 2-log reduction at room temperature, demonstrating the biocontrol potential of non-O157 Shiga toxin-producing E. coli on sprout seeds.


Subject(s)
Bacteriophages/physiology , Food Contamination/prevention & control , Food Preservation/methods , Myoviridae/physiology , Seeds/microbiology , Shiga-Toxigenic Escherichia coli/virology , Vigna/microbiology , Bacteriophages/classification , Bacteriophages/genetics , Food Contamination/analysis , Phylogeny , Shiga Toxin/metabolism , Shiga-Toxigenic Escherichia coli/genetics , Shiga-Toxigenic Escherichia coli/metabolism
4.
Cryobiology ; 96: 85-91, 2020 10.
Article in English | MEDLINE | ID: mdl-32750360

ABSTRACT

Lyophilization is commonly used to effectively preserve the stability of bacteriophages (phages) in long-term storage. However, information regarding the lyophilization of phages specific to Shiga toxin-producing Escherichia coli (STEC) strains is scarce. The objective of this study was to determine the effects of lyophilization with different cryoprotectants (sucrose and trehalose) and concentrations (0.1 M and 0.5 M) on the stability of seven lytic phages specific to STEC O157 and top 6 non-O157 strains during 6-month storage at -80 °C. The titers of lyophilized phages specific to STEC O26 (S1 O26) and STEC O121 (Pr121lvw) did not exhibit significant reduction after 6-month storage regardless of the use of cryoprotectants. Phages lytic against STEC O103 (Ro103C3lw) and STEC O145 (Ro145clw) with 0.1 M sucrose retained similar titers after lyophilization and frozen storage for 6 months (P > 0.05). Despite subtle differences, these results indicated that most of the selected phages had similar titer retention with the same cryoprotectants. Additionally, lytic activities of the phages against their primary hosts were not affected after lyophilization and 6-month frozen storage. Moreover, no detectable damage was observed on the lyophilized phage structures. These findings provide valuable insight into the use of lyophilization to preserve phages lytic against STEC strains.


Subject(s)
Bacteriophages , Escherichia coli Proteins , Shiga-Toxigenic Escherichia coli , Cryopreservation/methods , Escherichia coli Proteins/genetics , Freeze Drying , Serogroup
5.
Antibiotics (Basel) ; 8(2)2019 Jun 05.
Article in English | MEDLINE | ID: mdl-31195679

ABSTRACT

Shiga toxin-producing Escherichia coli (STEC) O145 is one of the most prevalent non-O157 serogroups associated with foodborne outbreaks. Lytic phages are a potential alternative to antibiotics in combatting bacterial pathogens. In this study, we characterized a Siphoviridae phage lytic against STEC O145 strains as a novel antimicrobial agent. Escherichia phage vB_EcoS-Ro145clw (Ro145clw) was isolated and purified prior to physiological and genomic characterization. Then, in vitro antimicrobial activity against an outbreak strain, E. coli O145:H28, was evaluated. Ro145clw is a double-stranded DNA phage with a genome 42,031 bp in length. Of the 67 genes identified in the genome, 21 were annotated with functional proteins, none of which were stx genes. Ro145clw had a latent period of 21 min and a burst size of 192 phages per infected cell. The phage could sustain a wide range of pH (pH 3 to pH 10) and temperatures (-80 °C to -73 °C). Ro145clw was able to reduce E. coli O145:H28 in lysogeny broth by approximately 5 log at 37 °C in four hours. These findings indicate that the Ro145clw phage is a promising antimicrobial agent that can be used to control E. coli O145 in adverse pH and temperature conditions.

6.
Food Chem ; 264: 449-454, 2018 Oct 30.
Article in English | MEDLINE | ID: mdl-29853400

ABSTRACT

Methylenecyclcopropylglycine (MCPG) and hypoglycin A (HGA) are naturally occurring amino acids found in various soapberry (Sapindaceae) fruits. These toxins have been linked to illnesses worldwide and were recently implicated in Asian outbreaks of acute hypoglycemic encephalopathy. In a previous joint agricultural and public health investigation, we developed an analytical method capable of evaluating MCPG and HGA concentrations in soapberry fruit arils as well as a clinical method for the urinary metabolites of the toxins. Since the initial soapberry method only analyzed the aril portion of the fruit, we present here the extension of the method to include the fruit seed matrix. This work is the first method to quantitate both MCPG and HGA concentrations in the seeds of soapberry fruit, including those collected during a public health investigation. Further, this is the first quantitation of HGA in litchi seeds as well as both toxins in mamoncillo and longan seeds.


Subject(s)
Chromatography, High Pressure Liquid , Cyclopropanes/analysis , Glycine/analogs & derivatives , Hypoglycins/analysis , Sapindus/metabolism , Tandem Mass Spectrometry , Fruit/chemistry , Fruit/metabolism , Glycine/analysis , Seeds/metabolism
7.
Front Microbiol ; 8: 2436, 2017.
Article in English | MEDLINE | ID: mdl-29276506

ABSTRACT

Plant injury is inherent to the production and processing of fruit and vegetables. The opportunistic colonization of damaged plant tissue by human enteric pathogens may contribute to the occurrence of outbreaks of foodborne illness linked to produce. Escherichia coli O157:H7 (EcO157) responds to physicochemical stresses in cut lettuce and lettuce lysates by upregulation of several stress response pathways. We investigated the tolerance of EcO157 to osmotic stress imposed by the leakage of osmolytes from injured lettuce leaf tissue. LC-MS analysis of bacterial osmoprotectants in lettuce leaf lysates and wound washes indicated an abundant natural pool of choline, but sparse quantities of glycine betaine and proline. Glycine betaine was a more effective osmoprotectant than choline in EcO157 under osmotic stress conditions in vitro. An EcO157 mutant with a deletion of the betTIBA genes, which are required for biosynthesis of glycine betaine from imported choline, achieved population sizes twofold lower than those of the parental strain (P < 0.05) over the first hour of colonization of cut lettuce in modified atmosphere packaging (MAP). The cell concentrations of the betTIBA mutant also were 12-fold lower than those of the parental strain (P < 0.01) when grown in hypertonic lettuce lysate, indicating that lettuce leaf cellular contents provide choline for osmoprotection of EcO157. To demonstrate the utilization of available choline by EcO157 for osmoadaptation in injured leaf tissue, deuterated (D-9) choline was introduced to wound sites in MAP lettuce; LC-MS analysis revealed the conversion of D9-choline to D-9 glycine betaine in the parental strain, but no significant amounts were observed in the betTIBA mutant. The EcO157 ΔbetTIBA-ΔotsBA double mutant, which is additionally deficient in de novo synthesis of the compatible solute trehalose, was significantly less fit than the parental strain after their co-inoculation onto injured lettuce leaves and MAP cut lettuce. However, its competitive fitness followed a different time-dependent trend in MAP lettuce, likely due to differences in O2 content, which modulates betTIBA expression. Our study demonstrates that damaged lettuce leaf tissue does not merely supply EcO157 with substrates for proliferation, but also provides the pathogen with choline for its survival to osmotic stress experienced at the site of injury.

8.
Article in English | MEDLINE | ID: mdl-28713782

ABSTRACT

Mycobacterium avium subsp. paratuberculosis (MAP), the causative agent of Johne's disease in cattle, is responsible for significant economic losses to the US dairy industry. The pathogen has also been associated with chronic human diseases like Crohn's disease, type 1 diabetes and multiple sclerosis. Determining causation requires rapid characterization and source tracking the pathogen. Here, we used matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry to characterize and differentiate strains of MAP from 14 other species of Mycobacterium from bovine, human, and environmental sources. Lysates from cells disrupted by bead beating in TFA-acetonitrile solution were analyzed by MALDI-TOF. MAP strains were differentiated by mass spectral profiles that are distinct from each other and from other Mycobacterium species. Cluster analysis of spectral profiles indicates two distinct clusters, one dominated by the members of avium complex and a second group dominated by members of fortuitum and parafortuitum complexes. We believe that MALDI-TOF methods can be used to differentiate and source-track MAP strains.


Subject(s)
Bacteriological Techniques/methods , Mycobacterium avium subsp. paratuberculosis/isolation & purification , Mycobacterium/isolation & purification , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Animals , Cattle , Cluster Analysis , Crohn Disease/diagnosis , Crohn Disease/microbiology , Humans , Mycobacterium/pathogenicity , Mycobacterium avium subsp. paratuberculosis/pathogenicity , Paratuberculosis/diagnosis , Paratuberculosis/microbiology , Time Factors
9.
Lancet Glob Health ; 5(4): e458-e466, 2017 04.
Article in English | MEDLINE | ID: mdl-28153514

ABSTRACT

BACKGROUND: Outbreaks of unexplained illness frequently remain under-investigated. In India, outbreaks of an acute neurological illness with high mortality among children occur annually in Muzaffarpur, the country's largest litchi cultivation region. In 2014, we aimed to investigate the cause and risk factors for this illness. METHODS: In this hospital-based surveillance and nested age-matched case-control study, we did laboratory investigations to assess potential infectious and non-infectious causes of this acute neurological illness. Cases were children aged 15 years or younger who were admitted to two hospitals in Muzaffarpur with new-onset seizures or altered sensorium. Age-matched controls were residents of Muzaffarpur who were admitted to the same two hospitals for a non-neurologic illness within seven days of the date of admission of the case. Clinical specimens (blood, cerebrospinal fluid, and urine) and environmental specimens (litchis) were tested for evidence of infectious pathogens, pesticides, toxic metals, and other non-infectious causes, including presence of hypoglycin A or methylenecyclopropylglycine (MCPG), naturally-occurring fruit-based toxins that cause hypoglycaemia and metabolic derangement. Matched and unmatched (controlling for age) bivariate analyses were done and risk factors for illness were expressed as matched odds ratios and odds ratios (unmatched analyses). FINDINGS: Between May 26, and July 17, 2014, 390 patients meeting the case definition were admitted to the two referral hospitals in Muzaffarpur, of whom 122 (31%) died. On admission, 204 (62%) of 327 had blood glucose concentration of 70 mg/dL or less. 104 cases were compared with 104 age-matched hospital controls. Litchi consumption (matched odds ratio [mOR] 9·6 [95% CI 3·6 - 24]) and absence of an evening meal (2·2 [1·2-4·3]) in the 24 h preceding illness onset were associated with illness. The absence of an evening meal significantly modified the effect of eating litchis on illness (odds ratio [OR] 7·8 [95% CI 3·3-18·8], without evening meal; OR 3·6 [1·1-11·1] with an evening meal). Tests for infectious agents and pesticides were negative. Metabolites of hypoglycin A, MCPG, or both were detected in 48 [66%] of 73 urine specimens from case-patients and none from 15 controls; 72 (90%) of 80 case-patient specimens had abnormal plasma acylcarnitine profiles, consistent with severe disruption of fatty acid metabolism. In 36 litchi arils tested from Muzaffarpur, hypoglycin A concentrations ranged from 12·4 µg/g to 152·0 µg/g and MCPG ranged from 44·9 µg/g to 220·0 µg/g. INTERPRETATION: Our investigation suggests an outbreak of acute encephalopathy in Muzaffarpur associated with both hypoglycin A and MCPG toxicity. To prevent illness and reduce mortality in the region, we recommended minimising litchi consumption, ensuring receipt of an evening meal and implementing rapid glucose correction for suspected illness. A comprehensive investigative approach in Muzaffarpur led to timely public health recommendations, underscoring the importance of using systematic methods in other unexplained illness outbreaks. FUNDING: US Centers for Disease Control and Prevention.


Subject(s)
Acute Febrile Encephalopathy/diagnosis , Disease Outbreaks/statistics & numerical data , Fruit/toxicity , Litchi/toxicity , Neurotoxicity Syndromes/diagnosis , Acute Febrile Encephalopathy/epidemiology , Acute Febrile Encephalopathy/etiology , Adolescent , Case-Control Studies , Child , Cyclopropanes/analysis , Female , Glycine/analogs & derivatives , Glycine/analysis , Humans , Hypoglycins/analysis , India , Male , Neurotoxicity Syndromes/epidemiology , Neurotoxicity Syndromes/etiology , Odds Ratio
10.
J Agric Food Chem ; 64(27): 5607-13, 2016 Jul 13.
Article in English | MEDLINE | ID: mdl-27367968

ABSTRACT

Methylenecyclopropylglycine (MCPG) and hypoglycin A (HGA) are naturally occurring amino acids found in some soapberry fruits. Fatalities have been reported worldwide as a result of HGA ingestion, and exposure to MCPG has been implicated recently in the Asian outbreaks of hypoglycemic encephalopathy. In response to an outbreak linked to soapberry ingestion, the authors developed the first method to simultaneously quantify MCPG and HGA in soapberry fruits from 1 to 10 000 ppm of both toxins in dried fruit aril. Further, this is the first report of HGA in litchi, longan, and mamoncillo arils. This method is presented to specifically address the laboratory needs of public-health investigators in the hypoglycemic encephalitis outbreaks linked to soapberry fruit ingestion.


Subject(s)
Chromatography, High Pressure Liquid/methods , Cyclopropanes/analysis , Fruit/chemistry , Glycine/analogs & derivatives , Hypoglycins/analysis , Sapindaceae/chemistry , Tandem Mass Spectrometry/methods , Cyclopropanes/toxicity , Fruit/toxicity , Glycine/analysis , Glycine/toxicity , Hypoglycins/toxicity , Sapindaceae/toxicity
11.
BMC Genomics ; 16: 303, 2015 Apr 16.
Article in English | MEDLINE | ID: mdl-25887227

ABSTRACT

BACKGROUND: Citrus represents a crop of global importance both in economic impact and significance to nutrition. Citrus production worldwide is threatened by the disease Huanglongbing (HLB), caused by the phloem-limited pathogen Candidatus Liberibacter spp.. As a source of stable HLB-resistance has yet to be identified, there is considerable interest in characterization of novel disease-associated citrus genes. RESULTS: A gene family of Small Cyclic Amphipathic Peptides (SCAmpPs) in citrus is described. The citrus genomes contain 100-150 SCAmpPs genes, approximately 50 of which are represented in the citrus EST database. These genes encode small ~50 residue precursor proteins that are post-translationally processed, releasing 5-10 residue cyclic peptides. The structures of the SCAmpPs genes are highly conserved, with the small coding domains interrupted by a single intron and relatively extended untranslated regions. Some family members are very highly transcribed in specific citrus tissues, as determined by representation in tissue-specific cDNA libraries. Comparison of the ESTs of related SCAmpPs revealed an unexpected evolutionary profile, consistent with targeted mutagenesis of the predicted cyclic peptide domain. The SCAmpPs genes are displayed in clusters on the citrus chromosomes, with apparent association with receptor leucine-rich repeat protein arrays. This study focused on three SCAmpPs family members with high constitutive expression in citrus phloem. Unexpectedly high sequence conservation was observed in the promoter region of two phloem-expressed SCAmpPs that encode very distinct predicted cyclic products. The processed cyclic product of one of these phloem SCAmpPs was characterized by LC-MS-MS analysis of phloem tissue, revealing properties consistent with a K(+) ionophore. CONCLUSIONS: The SCAmpPs amino acid composition, protein structure, expression patterns, evolutionary profile and chromosomal distribution are consistent with designation as ribosomally synthesized defense-related peptides.


Subject(s)
Citrus/genetics , Genes, Plant , Peptides, Cyclic/genetics , Amino Acid Sequence , Chromatography, High Pressure Liquid , Databases, Genetic , Expressed Sequence Tags , Leucine-Rich Repeat Proteins , Mass Spectrometry , Molecular Sequence Data , Peptides, Cyclic/analysis , Peptides, Cyclic/metabolism , Proteins/genetics , Proteins/metabolism , Sequence Alignment
12.
J Agric Food Chem ; 62(52): 12695-700, 2014 Dec 31.
Article in English | MEDLINE | ID: mdl-25437489

ABSTRACT

Biochemical characterizations of food allergens are required for understanding the allergenicity of food allergens. Such studies require a relatively large amount of highly purified allergens. The level of Pru du 4 in almond is low, and its expression in a soluble form in Escherichia coli required an expression tag. An MBP tag was used to enhance its expression and solubility. Sumo was used for the first time as a peptidase recognition site. The expression tag was removed with a sumo protease, and the resulting wild-type Pru du 4 was purified chromatographically. The stability of the allergen was investigated with chemical denaturation. The Gibbs free energy of Pru du 4 folding-unfolding transition was determined to be 5.4 ± 0.7 kcal/mol.


Subject(s)
Antigens, Plant/chemistry , Antigens, Plant/isolation & purification , Plant Proteins/chemistry , Plant Proteins/isolation & purification , Prunus/chemistry , Antigens, Plant/genetics , Antigens, Plant/immunology , Cloning, Molecular , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Plant Proteins/genetics , Plant Proteins/immunology , Protein Folding , Prunus/genetics , Prunus/immunology
13.
J Am Soc Mass Spectrom ; 21(5): 819-32, 2010 May.
Article in English | MEDLINE | ID: mdl-20188588

ABSTRACT

We report covalent attachment via a thiol ester linkage of 3,5-dimethoxy-4-hydroxycinnamic acid (sinapinic acid or SA) to cysteine-containing protein biomarkers from bacterial cell lysates of E. coli analyzed by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry when using SA as the matrix. Evidence to support this conclusion is the appearance of additional peaks in the MS spectra when using SA, which are absent when using alpha-cyano-4-hydroxycinnamic acid (HCCA). The additional peaks appear at a mass-to-charge (m/z) approximately 208 greater to the m/z of a more abundant protein ion peak. Protein biomarkers were identified by tandem mass spectrometry (MS/MS) using a MALDI time-of-flight/time-of-flight (TOF-TOF) mass spectrometer and top-down proteomics. Three protein biomarkers, HdeA, HdeB, and homeobox or YbgS (each containing two cysteine residues) were identified as having reactivity to SA. Non-cysteine-containing protein biomarkers showed no evidence of reactivity to SA. MS ions and MS/MS fragment ions were consistent with covalent attachment of SA via a thiol ester linkage to the side-chain of cysteine residues. MS/MS of a protein biomarker ion with a covalently attached SA revealed fragment ion peaks suggesting dissociative loss SA. We propose dissociative loss of SA is facilitated by a pentacyclic transition-state followed by proton abstraction of the beta-hydrogen of the bound SA by a sulfur lone pair followed by dissociative loss of 3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-ynal. The apparent reactivity of SA to cysteine/disulfide-containing proteins may complicate identification of such proteins, however the apparent differential reactivity of SA and HCCA toward cysteine/disulfide-containing proteins may be exploited for identification of unknown cysteine-containing proteins.


Subject(s)
Bacterial Proteins/chemistry , Coumaric Acids/chemistry , Cysteine/chemistry , Escherichia coli/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Amino Acid Sequence , Bacterial Proteins/metabolism , Coumaric Acids/metabolism , Molecular Sequence Data
14.
Anal Chem ; 82(7): 2717-25, 2010 Apr 01.
Article in English | MEDLINE | ID: mdl-20232878

ABSTRACT

Six protein biomarkers from two strains of Escherichia coli O157:H7 and one non-O157:H7, nonpathogenic strain of E. coli have been identified by matrix-assisted laser desorption ionization time-of-flight-time-of-flight tandem mass spectrometry (MALDI-TOF-TOF-MS/MS) and top-down proteomics. Proteins were extracted from bacterial cell lysates, ionized by MALDI, and analyzed by MS/MS. Protein biomarker ions were identified from their sequence-specific fragment ions by comparison to a database of in silico fragment ions derived from bacterial protein sequences. Web-based software, developed in-house, was used to rapidly compare the mass-to-charge (m/z) of MS/MS fragment ions to the m/z of in silico fragment ions derived from hundreds of bacterial protein sequences. A peak matching algorithm and a p-value algorithm were used to independently score and rank identifications on the basis of the number of MS/MS-in silico matches. The six proteins identified were the acid stress chaperone-like proteins, HdeA and HdeB; the cold shock protein, CspC; the YbgS (or homeobox protein); the putative stress-response protein YjbJ (or CsbD family protein); and a protein of unknown function, YahO. HdeA, HdeB, YbgS, and YahO proteins were found to be modified post-translationally with removal of an N-terminal signal peptide. Gene sequencing of hdeA, hdeB, cspC, ybgS, yahO, and yjbJ for 11 strains of E. coli O157:H7 and 7 strains of the "near-neighbor" serotype O55:H7 revealed a high degree sequence homology between these two serotypes. Although it was not possible to distinguish O157:H7 from O55:H7 from these six biomarkers, it was possible to distinguish E. coli O157:H7 from a nonpathogenic E. coli by top-down proteomics of the YahO and YbgS. In the case of the YahO protein, a single amino acid residue substitution in its sequence (resulting in a molecular weight difference of only 1 Da) was sufficient to distinguish E. coli O157:H7 from a non-O157:H7, nonpathogenic E. coli by MALDI-TOF-TOF-MS/MS, whereas this would be difficult to distinguish by MALDI-TOF-MS. Finally, a protein biomarker ion at m/z approximately 9060 observed in the MS spectra of non-O157:H7 E. coli strains but absent from MS spectra of E. coli O157:H7 strains was identified by top-down analysis to be the HdeB acid stress chaperone-like protein consistent with previous identifications by gene sequencing and bottom-up proteomics.


Subject(s)
Escherichia coli O157/isolation & purification , Escherichia coli Proteins/metabolism , Proteomics/methods , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Algorithms , Amino Acid Sequence , Biomarkers/metabolism , Escherichia coli Proteins/genetics , Molecular Sequence Data , Polymerase Chain Reaction , Serotyping
15.
Appl Environ Microbiol ; 75(13): 4341-53, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19411427

ABSTRACT

We have developed web-based software for the rapid identification of protein biomarkers of bacterial microorganisms. Proteins from bacterial cell lysates were ionized by matrix-assisted laser desorption ionization (MALDI), mass isolated, and fragmented using a tandem time of flight (TOF-TOF) mass spectrometer. The sequence-specific fragment ions generated were compared to a database of in silico fragment ions derived from bacterial protein sequences whose molecular weights are the same as the nominal molecular weights of the protein biomarkers. A simple peak-matching and scoring algorithm was developed to compare tandem mass spectrometry (MS-MS) fragment ions to in silico fragment ions. In addition, a probability-based significance-testing algorithm (P value), developed previously by other researchers, was incorporated into the software for the purpose of comparison. The speed and accuracy of the software were tested by identification of 10 protein biomarkers from three Campylobacter strains that had been identified previously by bottom-up proteomics techniques. Protein biomarkers were identified using (i) their peak-matching scores and/or P values from a comparison of MS-MS fragment ions with all possible in silico N and C terminus fragment ions (i.e., ions a, b, b-18, y, y-17, and y-18), (ii) their peak-matching scores and/or P values from a comparison of MS-MS fragment ions to residue-specific in silico fragment ions (i.e., in silico fragment ions resulting from polypeptide backbone fragmentation adjacent to specific residues [aspartic acid, glutamic acid, proline, etc.]), and (iii) fragment ion error analysis, which distinguished the systematic fragment ion error of a correct identification (caused by calibration drift of the second TOF mass analyzer) from the random fragment ion error of an incorrect identification.


Subject(s)
Bacteria/chemistry , Bacteria/classification , Bacterial Proteins/analysis , Internet , Proteomics/methods , Software , Biomarkers , Campylobacter , Mass Spectrometry/methods
16.
Lipids ; 44(4): 359-65, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19048323

ABSTRACT

Ricinoleate, a monohydroxy fatty acid, in castor oil has many industrial uses. Dihydroxy fatty acids can also be used in industry. The C(18) HPLC fractions of castor oil were analyzed by electrospray ionization mass spectrometry of lithium adducts to identify the acylglycerols containing dihydroxy fatty acids and the dihydroxy fatty acids. Four diacylglycerols identified were diOH18:1-diOH18:1, diOH18:2-OH18:1, diOH18:1-OH18:1 and diOH18:0-OH18:1. Eight triacylglycerols identified were diOH18:1-diOH18:1-diOH18:1, diOH18:1-diOH18:1-diOH18:0, diOH18:2-diOH18:1-OH18:1, diOH18:1-diOH18:1-OH18:1, diOH18:1-diOH18:0-OH18:1, diOH18:2-OH18:1-OH18:1, diOH18:1-OH18:1-OH18:1 and diOH18:0-OH18:1-OH18:1. The locations of fatty acids on the glycerol backbone were not determined. The structures of these three newly identified dihydroxy fatty acids were proposed as 11,12-dihydroxy-9-octadecenoic acid, 11,12-dihydroxy-9,13-octadecadienoic acid and 11,12-dihydroxyoctadecanoic acid. These individual acylglycerols were at the levels of about 0.5% or less in castor oil and can be isolated from castor oil or overproduced in a transgenic oil seed plant for future industrial uses.


Subject(s)
Castor Oil/chemistry , Fatty Acids/analysis , Glycerides/chemistry , Spectrometry, Mass, Electrospray Ionization/methods , Chromatography, High Pressure Liquid
17.
J Proteome Res ; 5(10): 2527-38, 2006 Oct.
Article in English | MEDLINE | ID: mdl-17022624

ABSTRACT

We have identified several protein biomarkers of three Campylobacter jejuni strains (RM1221, RM1859, and RM3782) by proteomic techniques. The protein biomarkers identified are prominently observed in the time-of-flight mass spectra (TOF MS) of bacterial cell lysate supernatants ionized by matrix-assisted laser desorption/ionization (MALDI). The protein biomarkers identified were: DNA-binding protein HU, translation initiation factor IF-1, cytochrome c553, a transthyretin-like periplasmic protein, chaperonin GroES, thioredoxin Trx, and ribosomal proteins: L7/L12 (50S), L24 (50S), S16 (30S), L29 (50S), and S15 (30S), and conserved proteins similar to strain NCTC 11168 proteins Cj1164 and Cj1225. The protein biomarkers identified appear to represent high copy, intact proteins. The significant findings are as follows: (1) Biomarker mass shifts between these strains were due to amino acid substitutions of the primary polypeptide sequence and not due to changes in post-translational modifications (PTMs). (2) If present, a PTM of a protein biomarker appeared consistently for all three strains, which supported that the biomarker mass shifts observed between strains were not due to PTM variability. (3) The PTMs observed included N-terminal methionine (N-Met) cleavage as well as a number of other PTMs. (4) It was discovered that protein biomarkers of C. jejuni (as well as other thermophilic Campylobacters) appear to violate the N-Met cleavage rule of bacterial proteins, which predicts N-Met cleavage if the penultimate residue is threonine. Two protein biomarkers (HU and 30S ribosomal protein S16) that have a penultimate threonine residue do not show N-Met cleavage. In all other cases, the rule correctly predicted N-Met cleavage among the biomarkers analyzed. This exception to the N-Met cleavage rule has implications for the development of bioinformatics algorithms for protein/pathogen identification. (5) There were fewer biomarker mass shifts between strains RM1221 and RM1859 compared to strain RM3782. As the mass shifts were due to the frequency of amino acid substitutions (and thus underlying genetic variations), this suggested that strains RM1221 and RM1859 were phylogenetically closer to one another than to strain RM3782 (in addition, a protein biomarker prominent in the spectra of RM1221 and RM1859 was absent from the RM3782 spectrum due to a nonsense mutation in the gene of the biomarker). These observations were confirmed by a nitrate reduction test, which showed that RM1221 and RM1859 were C. jejuni subsp. jejuni whereas RM3782 was C. jejuni subsp. doylei. This result suggests that detection/identification of protein biomarkers by pattern recognition and/or bioinformatics algorithms may easily subspeciate bacterial microorganisms. (6) Finally, the number and variation of PTMs detected in this relatively small number of protein biomarkers suggest that bioinformatics algorithms for pathogen identification may need to incorporate many more possible PTMs than suggested previously in the literature.


Subject(s)
Bacterial Proteins/analysis , Bacterial Typing Techniques , Campylobacter jejuni/classification , Protein Processing, Post-Translational , Proteomics/methods , Amino Acid Sequence , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biomarkers/analysis , Campylobacter jejuni/genetics , Genes, Bacterial , Molecular Sequence Data , Mutation , Nitrates/metabolism , Oxidation-Reduction , Sequence Analysis, DNA , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
18.
J Agric Food Chem ; 54(10): 3498-504, 2006 May 17.
Article in English | MEDLINE | ID: mdl-19127716

ABSTRACT

An acylglycerol (AG) containing four acyl chains, (12-ricinoleoylricinoleoyl)diricinoleoylglycerol (RRRR), was positively identified for the first time in a natural source in castor oil using electrospray ionization tandem mass spectrometry (ESI-MS/MS). HPLC-purified RRRR from castor oil was subjected to ion trap and high-resolution ESI-MS/MS. The precursor and fragment ions of [RRRR + Na]+ showed the expected masses, and the sodiated fragment ions of both diacylglycerols and fatty acids were detected. Because fragment ions of fatty acids from [AG + NH4]+ adducts cannot be detected by ESI-MS/MS, [AG + Na]+ adducts are more informative. Radiolabeled triricinolein (RRR) was incorporated into RRRR in castor microsomes, indicating that RRRR is biosynthesized in castor bean. This newly identified and biosynthesized RRRR represents a new AG subclass of tetra-acylglycerols (or acylacyldiacylglycerol).


Subject(s)
Castor Oil/chemistry , Glycerides/isolation & purification , Spectrometry, Mass, Electrospray Ionization/methods , Triglycerides/isolation & purification , Acylation , Ricinus communis/chemistry , Chromatography, High Pressure Liquid/methods , Molecular Structure , Triglycerides/biosynthesis , Triglycerides/chemistry
19.
Appl Environ Microbiol ; 71(10): 6292-307, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16204551

ABSTRACT

Multiple strains of Campylobacter coli, C. jejuni, C. helveticus, C. lari, C. sputorum, and C. upsaliensis isolated from animal, clinical, or food samples have been analyzed by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Whole bacterial cells were harvested from colonies or confluent growth on agar and transferred directly into solvent and then to a spot of dried 3-methoxy-4-hydroxycinnamic acid (matrix). Multiple ions in the 5,000- to 15,000-Da mass range were evident in spectra for each strain; one or two ions in the 9,500- to 11,000-Da range were consistently high intensity. "Species-identifying" biomarker ions (SIBIs) were evident from analyses of multiple reference strains for each of the six species, including the genome strains C. jejuni NCTC 11168 and C. jejuni RM1221. Strains grown on nine different combinations of media and atmospheres yielded SIBI masses within +/-5 Da with external instrument calibration. The highest-intensity C. jejuni SIBIs were cytosolic proteins, including GroES, HU/HCj, and RplL. Multiple intraspecies SIBIs, corresponding probably to nonsynonymous nucleotide polymorphisms, also provided some intraspecies strain differentiation. MALDI-TOF MS analysis of 75 additional Campylobacter strains isolated from humans, poultry, swine, dogs, and cats revealed (i) associations of SIBI type with source, (ii) strains previously speciated incorrectly, and (iii) "strains" composed of more than one species. MALDI-TOF MS provides an accurate, sensitive, and rapid method for identification of multiple Campylobacter species relevant to public health and food safety.


Subject(s)
Bacterial Typing Techniques , Campylobacter/classification , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Animals , Campylobacter/chemistry , Campylobacter/growth & development , Campylobacter/isolation & purification , Campylobacter Infections/microbiology , Campylobacter Infections/veterinary , Campylobacter coli/chemistry , Campylobacter coli/classification , Campylobacter coli/growth & development , Campylobacter coli/isolation & purification , Campylobacter jejuni/chemistry , Campylobacter jejuni/classification , Campylobacter jejuni/growth & development , Campylobacter jejuni/isolation & purification , Campylobacter lari/chemistry , Campylobacter lari/classification , Campylobacter lari/growth & development , Campylobacter lari/isolation & purification , Campylobacter sputorum/chemistry , Campylobacter sputorum/classification , Campylobacter sputorum/growth & development , Campylobacter sputorum/isolation & purification , Campylobacter upsaliensis/chemistry , Campylobacter upsaliensis/classification , Campylobacter upsaliensis/growth & development , Campylobacter upsaliensis/isolation & purification , Cat Diseases/microbiology , Cats , Cattle , Culture Media , Dog Diseases/microbiology , Dogs , Food Microbiology , Humans , Species Specificity
20.
J Agric Food Chem ; 53(19): 7630-6, 2005 Sep 21.
Article in English | MEDLINE | ID: mdl-16159196

ABSTRACT

Commercial grapefruit seed extracts (GSE) were extracted with chloroform. The solvent was evaporated, and the resulting solid was subsequently analyzed by high-performance liquid chromatography (HPLC), electrospray ionization mass spectrometry (ESI/MS), tandem mass spectrometry (ESI/MS/MS), and elemental analysis (by proton-induced X-ray emission analysis). Three major constituents were observed by HPLC and were identified as benzyldimethyldodecylammonium chloride, benzyldimethyltetradecylammonium chloride, and benzyldimethylhexadecylammonium chloride. This mixture of homologues is commonly known as benzalkonium chloride, a widely used synthetic antimicrobial ingredient used in cleaning and disinfection agents.


Subject(s)
Benzalkonium Compounds/analysis , Citrus paradisi/chemistry , Seeds/chemistry , Chloroform , Chromatography, High Pressure Liquid , Magnetic Resonance Spectroscopy , Mass Spectrometry , Plant Extracts/chemistry , Spectrometry, Mass, Electrospray Ionization , Spectrometry, X-Ray Emission
SELECTION OF CITATIONS
SEARCH DETAIL
...