Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 15: 1328987, 2024.
Article in English | MEDLINE | ID: mdl-38351914

ABSTRACT

Abundant host and bacterial sequences can obscure the detection of less prevalent viruses in untargeted next-generation sequencing (NGS). Efficient removal of these non-targeted sequences is vital for accurate viral detection. This study presents a novel 28S ribosomal RNA (rRNA) RT-qPCR assay designed to assess the efficiency of avian rRNA depletion before conducting costly NGS for the detection of avian RNA viruses. The comprehensive evaluation of this 28S-test focuses on substituting DNase I with alternative DNases in our established depletion protocols and finetuning essential parameters for reliable host rRNA depletion. To validate the effectiveness of the 28S-test, we compared its performance with NGS results obtained from both Illumina and Nanopore sequencing platforms. This evaluation utilized swab samples from chickens infected with highly pathogenic avian influenza virus, subjected to established and modified depletion protocols. Both methods significantly reduced host rRNA levels, but using the alternative DNase had superior performance. Additionally, utilizing the 28S-test, we explored cost- and time-effective strategies, such as reduced probe concentrations and other alternative DNase usage, assessed the impact of filtration pre-treatment, and evaluated various experimental parameters to further optimize the depletion protocol. Our findings underscore the value of the 28S-test in optimizing depletion methods for advancing improvements in avian disease research through NGS.

2.
Proc Natl Acad Sci U S A ; 112(42): E5679-88, 2015 Oct 20.
Article in English | MEDLINE | ID: mdl-26438848

ABSTRACT

Reactive oxygen species (ROS) such as hydrogen peroxide (H2O2) govern cellular homeostasis by inducing signaling. H2O2 modulates the activity of phosphatases and many other signaling molecules through oxidation of critical cysteine residues, which led to the notion that initiation of ROS signaling is broad and nonspecific, and thus fundamentally distinct from other signaling pathways. Here, we report that H2O2 signaling bears hallmarks of a regular signal transduction cascade. It is controlled by hierarchical signaling events resulting in a focused response as the results place the mitochondrial respiratory chain upstream of tyrosine-protein kinase Lyn, Lyn upstream of tyrosine-protein kinase SYK (Syk), and Syk upstream of numerous targets involved in signaling, transcription, translation, metabolism, and cell cycle regulation. The active mediators of H2O2 signaling colocalize as H2O2 induces mitochondria-associated Lyn and Syk phosphorylation, and a pool of Lyn and Syk reside in the mitochondrial intermembrane space. Finally, the same intermediaries control the signaling response in tissues and species responsive to H2O2 as the respiratory chain, Lyn, and Syk were similarly required for H2O2 signaling in mouse B cells, fibroblasts, and chicken DT40 B cells. Consistent with a broad role, the Syk pathway is coexpressed across tissues, is of early metazoan origin, and displays evidence of evolutionary constraint in the human. These results suggest that H2O2 signaling is under control of a signal transduction pathway that links the respiratory chain to the mitochondrial intermembrane space-localized, ubiquitous, and ancient Syk pathway in hematopoietic and nonhematopoietic cells.


Subject(s)
Electron Transport , Hydrogen Peroxide/metabolism , Mitochondrial Membranes/metabolism , Signal Transduction , Animals , Cells, Cultured , Chickens , Enzyme Activation , Intracellular Signaling Peptides and Proteins/metabolism , Mice , Phosphorylation , Protein-Tyrosine Kinases/metabolism , Reactive Oxygen Species/metabolism , Syk Kinase , Tyrosine/metabolism
3.
Appl Environ Microbiol ; 81(6): 1932-41, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25556191

ABSTRACT

Enteric bacteria encounter a wide range of pHs throughout the human intestinal tract. We conducted experimental evolution of Escherichia coli K-12 to isolate clones with increased fitness during growth under acidic conditions (pH 4.5 to 4.8). Twenty-four independent populations of E. coli K-12 W3110 were evolved in LBK medium (10 g/liter tryptone, 5 g/liter yeast extract, 7.45 g/liter KCl) buffered with homopiperazine-N,N'-bis-2-(ethanosulfonic acid) and malate at pH 4.8. At generation 730, the pH was decreased to 4.6 with HCl. By 2,000 generations, all populations had achieved higher endpoint growth than the ancestor at pH 4.6 but not at pH 7.0. All evolving populations showed a progressive loss of activity of lysine decarboxylase (CadA), a major acid stress enzyme. This finding suggests a surprising association between acid adaptation and moderation of an acid stress response. At generation 2,000, eight clones were isolated from four populations, and their genomes were sequenced. Each clone showed between three and eight missense mutations, including one in a subunit of the RNA polymerase holoenzyme (rpoB, rpoC, or rpoD). Missense mutations were found in adiY, the activator of the acid-inducible arginine decarboxylase (adiA), and in gcvP (glycine decarboxylase), a possible acid stress component. For tests of fitness relative to that of the ancestor, lacZ::kan was transduced into each strain. All acid-evolved clones showed a high fitness advantage at pH 4.6. With the cytoplasmic pH depressed by benzoate (at external pH 6.5), acid-evolved clones showed decreased fitness; thus, there was no adaptation to cytoplasmic pH depression. At pH 9.0, acid-evolved clones showed no fitness advantage. Thus, our acid-evolved clones showed a fitness increase specific to low external pH.


Subject(s)
Acids/toxicity , Adaptation, Biological , Drug Resistance, Bacterial , Escherichia coli K12/drug effects , Culture Media/chemistry , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Hydrogen-Ion Concentration , Mutation, Missense
4.
PLoS One ; 8(3): e56796, 2013.
Article in English | MEDLINE | ID: mdl-23520457

ABSTRACT

Escherichia coli and other enteric bacteria survive exposure to extreme acid (pH 2 or lower) in gastric fluid. Aerated cultures survive via regulons expressing glutamate decarboxylase (Gad, activated by RpoS), cyclopropane fatty acid synthase (Cfa) and others. But extreme-acid survival is rarely tested under low oxygen, a condition found in the stomach and the intestinal tract. We observed survival of E. coli K-12 W3110 at pH 1.2-pH 2.0, conducting all manipulations (overnight culture at pH 5.5, extreme-acid exposure, dilution and plating) in a glove box excluding oxygen (10% H2, 5% CO2, balance N2). With dissolved O2 concentrations maintained below 6 µM, survival at pH 2 required Cfa but did not require GadC, RpoS, or hydrogenases. Extreme-acid survival in broth (containing tryptone and yeast extract) was diminished in media that had been autoclaved compared to media that had been filtered. The effect of autoclaved media on extreme-acid survival was most pronounced when oxygen was excluded. Exposure to H2O2 during extreme-acid treatment increased the death rate slightly for W3110 and to a greater extent for the rpoS deletion strain. Survival at pH 2 was increased in strains lacking the anaerobic regulator fnr. During anaerobic growth at pH 5.5, strains deleted for fnr showed enhanced transcription of acid-survival genes gadB, cfa, and hdeA, as well as catalase (katE). We show that E. coli cultured under oxygen exclusion (<6 µM O2) requires mechanisms different from those of aerated cultures. Extreme acid survival is more sensitive to autoclave products under oxygen exclusion.


Subject(s)
Bacterial Proteins/metabolism , Escherichia coli K12/metabolism , Glutamate Decarboxylase/metabolism , Hydrogenase/metabolism , Sigma Factor/metabolism , Anaerobiosis/physiology , Bacterial Proteins/genetics , Catalase/genetics , Catalase/metabolism , Colicins , Culture Media/pharmacology , Escherichia coli K12/genetics , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Gene Deletion , Glutamate Decarboxylase/genetics , Hydrogen Peroxide/pharmacology , Hydrogen-Ion Concentration , Hydrogenase/genetics , Methyltransferases/genetics , Methyltransferases/metabolism , Oxidants/pharmacology , Oxygen/metabolism , Sigma Factor/genetics
5.
Eval Rev ; 30(4): 481-504, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16807433

ABSTRACT

A meta-program theory is proposed to overcome the limitations and improve the use of program theory as an approach to faith-based program evaluation. The essentials for understanding religious organizations, their various programs, and faith and spirituality are discussed to support a rationale for developing a faith-based program theory that captures the complex nature of religious program phenomena. Implications for public policy are examined. New concepts based on structural approach and four program theories are formulated for program analysis. Several theoretical concepts for faith-based program evaluation to guide methods for describing patterns that reflect the religious beliefs and values are suggested.


Subject(s)
Models, Theoretical , Program Evaluation , Religion , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...