Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Neurobiol Dis ; 179: 106056, 2023 04.
Article in English | MEDLINE | ID: mdl-36863527

ABSTRACT

The relationship between genotype and phenotype in DYT-TOR1A dystonia as well as the associated motor circuit alterations are still insufficiently understood. DYT-TOR1A dystonia has a remarkably reduced penetrance of 20-30%, which has led to the second-hit hypothesis emphasizing an important role of extragenetic factors in the symptomatogenesis of TOR1A mutation carriers. To analyze whether recovery from a peripheral nerve injury can trigger a dystonic phenotype in asymptomatic hΔGAG3 mice, which overexpress human mutated torsinA, a sciatic nerve crush was applied. An observer-based scoring system as well as an unbiased deep-learning based characterization of the phenotype showed that recovery from a sciatic nerve crush leads to significantly more dystonia-like movements in hΔGAG3 animals compared to wildtype control animals, which persisted over the entire monitored period of 12 weeks. In the basal ganglia, the analysis of medium spiny neurons revealed a significantly reduced number of dendrites, dendrite length and number of spines in the naïve and nerve-crushed hΔGAG3 mice compared to both wildtype control groups indicative of an endophenotypical trait. The volume of striatal calretinin+ interneurons showed alterations in hΔGAG3 mice compared to the wt groups. Nerve-injury related changes were found for striatal ChAT+, parvalbumin+ and nNOS+ interneurons in both genotypes. The dopaminergic neurons of the substantia nigra remained unchanged in number across all groups, however, the cell volume was significantly increased in nerve-crushed hΔGAG3 mice compared to naïve hΔGAG3 mice and wildtype littermates. Moreover, in vivo microdialysis showed an increase of dopamine and its metabolites in the striatum comparing nerve-crushed hΔGAG3 mice to all other groups. The induction of a dystonia-like phenotype in genetically predisposed DYT-TOR1A mice highlights the importance of extragenetic factors in the symptomatogenesis of DYT-TOR1A dystonia. Our experimental approach allowed us to dissect microstructural and neurochemical abnormalities in the basal ganglia, which either reflected a genetic predisposition or endophenotype in DYT-TOR1A mice or a correlate of the induced dystonic phenotype. In particular, neurochemical and morphological changes of the nigrostriatal dopaminergic system were correlated with symptomatogenesis.


Subject(s)
Dystonia , Dystonic Disorders , Peripheral Nerve Injuries , Animals , Humans , Mice , Corpus Striatum/metabolism , Dopamine/metabolism , Dystonia/genetics , Dystonia/metabolism , Dystonic Disorders/genetics , Endophenotypes , Molecular Chaperones/genetics , Peripheral Nerve Injuries/metabolism , Substantia Nigra/metabolism
2.
Nano Lett ; 23(3): 820-826, 2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36656001

ABSTRACT

The introduction of topological physics into the field of photonics has led to the development of photonic devices endowed with robustness against structural disorder. While a range of platforms have been successfully implemented demonstrating topological protection of light in the classical domain, the implementation of quantum light sources in photonic devices harnessing topologically nontrivial resonances is largely unexplored. Here, we demonstrate a single photon source based on a single semiconductor quantum dot coupled to a topologically nontrivial Su-Schrieffer-Heeger (SSH) cavity mode. We provide an in-depth study of Purcell enhancement for this topological quantum light source and demonstrate its emission of nonclassical light on demand. Our approach is a promising step toward the application of topological cavities in quantum photonics.

3.
Science ; 373(6562): 1514-1517, 2021 Sep 24.
Article in English | MEDLINE | ID: mdl-34554782

ABSTRACT

Topological insulator lasers are arrays of semiconductor lasers that exploit fundamental features of topology to force all emitters to act as a single coherent laser. In this study, we demonstrate a topological insulator vertical-cavity surface-emitting laser (VCSEL) array. Each VCSEL emits vertically, but the in-plane coupling between emitters in the topological-crystalline platform facilitates coherent emission of the whole array. Our topological VCSEL array emits at a single frequency and displays interference, highlighting that the emitters are mutually coherent. Our experiments exemplify the power of topological transport of light: The light spends most of its time oscillating vertically, but the small in-plane coupling is sufficient to force the array of individual emitters to act as a single laser.

4.
Nano Lett ; 21(15): 6398-6405, 2021 08 11.
Article in English | MEDLINE | ID: mdl-34328737

ABSTRACT

Interacting bosonic particles in artificial lattices have proven to be a powerful tool for the investigation of exotic phases of matter as well as phenomena resulting from nontrivial topology. Exciton-polaritons, bosonic quasi-particles of light and matter, have been shown to combine the on-chip benefits of optical systems with strong interactions, inherited from their matter character. Technologically significant semiconductor platforms strictly require cryogenic temperatures. In this communication, we demonstrate exciton-polariton lasing for topological defects emerging from the imprinted lattice structure at room temperature. We utilize red fluorescent protein derived from DsRed of Discosoma sea anemones, hosting highly stable Frenkel excitons. Using a patterned mirror cavity, we tune the lattice potential landscape of a linear Su-Schrieffer-Heeger chain to design topological defects at domain boundaries and at the edge. We unequivocally demonstrate polariton lasing from these topological defects. This progress has paved the road to interacting boson many-body physics under ambient conditions.


Subject(s)
Lasers , Photons , Semiconductors , Temperature
6.
Nat Mater ; 20(9): 1233-1239, 2021 09.
Article in English | MEDLINE | ID: mdl-33958772

ABSTRACT

The emergence of two-dimensional crystals has revolutionized modern solid-state physics. From a fundamental point of view, the enhancement of charge carrier correlations has sparked much research activity in the transport and quantum optics communities. One of the most intriguing effects, in this regard, is the bosonic condensation and spontaneous coherence of many-particle complexes. Here we find compelling evidence of bosonic condensation of exciton-polaritons emerging from an atomically thin crystal of MoSe2 embedded in a dielectric microcavity under optical pumping at cryogenic temperatures. The formation of the condensate manifests itself in a sudden increase of luminescence intensity in a threshold-like manner, and a notable spin-polarizability in an externally applied magnetic field. Spatial coherence is mapped out via highly resolved real-space interferometry, revealing a spatially extended condensate. Our device represents a decisive step towards the implementation of coherent light-sources based on atomically thin crystals, as well as non-linear, valleytronic coherent devices.

7.
Sci Total Environ ; 758: 143586, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33218800

ABSTRACT

Environmental implications of climate change are complex and exhibit regional variations both within and between the polar regions. The increase of solar UV radiation flux over Antarctica due to stratospheric ozone depletion creates the optimal conditions for photochemical reactions on the snow. Modeling, laboratory, and indirect field studies suggest that snowpack process release gases to the atmosphere that can react on sea salt particles in remote regions such as Antarctica, modifying aerosol composition and physical properties of aerosols. Here, we present evidence of photochemical processing in West Antarctica aerosols using microscopic and chemical speciation of individual atmospheric particles. Individual aerosol particles collected at the Brazilian module Criosfera 1 were analyzed by scanning transmission X-ray microscopy with near edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS) combined with computer-controlled scanning electron microscopy (CCSEM) with energy-dispersive X-ray (EDX) microanalysis. The displacement of chlorine relative to sodium was observed over most of the sea salt particles. Particles with a chemical composition consistent with NaCl-NO3 contributed up to 30% of atmospheric particles investigated. Overall, this study provides evidence that the snowpack and particulate nitrate photolysis should be considered in dynamic partition equilibrium in the troposphere. These findings may assist in reducing modeling uncertainties and present new insights into the aerosol chemical composition in the polar environment.

8.
Nat Commun ; 9(1): 4793, 2018 11 19.
Article in English | MEDLINE | ID: mdl-30451836

ABSTRACT

In the Amazon basin, particles containing mixed sodium salts are routinely observed and are attributed to marine aerosols transported from the Atlantic Ocean. Using chemical imaging analysis, we show that, during the wet season, fungal spores emitted by the forest biosphere contribute at least 30% (by number) to sodium salt particles in the central Amazon basin. Hydration experiments indicate that sodium content in fungal spores governs their growth factors. Modeling results suggest that fungal spores account for ~69% (31-95%) of the total sodium mass during the wet season and that their fractional contribution increases during nighttime. Contrary to common assumptions that sodium-containing aerosols originate primarily from marine sources, our results suggest that locally-emitted fungal spores contribute substantially to the number and mass of coarse particles containing sodium. Hence, their role in cloud formation and contribution to salt cycles and the terrestrial ecosystem in the Amazon basin warrant further consideration.


Subject(s)
Particulate Matter/analysis , Sodium/analysis , Spores, Fungal/chemistry , Aerosols , Brazil , Ecosystem , Rainforest , Seasons
9.
Phys Rev Lett ; 121(25): 257402, 2018 Dec 21.
Article in English | MEDLINE | ID: mdl-30608796

ABSTRACT

Two-dimensional electronic materials such as graphene and transition metal dichalgenides feature unique electrical and optical properties due to the conspirative effect of band structure, orbital coupling, and crystal symmetry. Synthetic matter, as accomplished by artificial lattice arrangements of cold atoms, molecules, electron patterning, and optical cavities, has emerged to provide manifold intriguing frameworks to likewise realize such scenarios. Exciton polaritons have recently been added to the list of promising candidates for the emulation of system Hamiltonians on a semiconductor platform, offering versatile tools to engineer the potential landscape and to access the nonlinear electro-optical regime. In this work, we introduce an electronically driven square and honeycomb lattice of exciton polaritons, paving the way towards real world devices based on polariton lattices for on-chip applications. Our platform exhibits laserlike emission from high-symmetry points under direct current injection, hinting at the prospect of electrically driven polariton lasers with possibly topologically nontrivial properties.

10.
Phys Chem Chem Phys ; 18(43): 29721-29731, 2016 Nov 02.
Article in English | MEDLINE | ID: mdl-27722496

ABSTRACT

Heterogeneous ice nucleation is a physical chemistry process of critical relevance to a range of topics in the fundamental and applied sciences and technologies. Heterogeneous ice nucleation remains insufficiently understood, partially due to the lack of experimental methods capable of obtaining in situ microscopic details of ice formation over nucleating substrates or particles. We present microscopic observations of ice nucleation events on kaolinite particles at the nanoscale and demonstrate the capability of direct tracking and micro-spectroscopic characterization of individual ice nucleating particles (INPs) in an authentic atmospheric sample. This approach utilizes a custom-built ice nucleation cell, interfaced with an Environmental Scanning Electron Microscope (IN-ESEM platform) operated at temperatures and relative humidities relevant for heterogeneous ice nucleation. The IN-ESEM platform allows dynamic observations of individual ice formation events over particles in isobaric and isothermal experiments. Isothermal experiments on individual kaolinite particles demonstrate that ice crystals preferably nucleate at the edges of the stacked kaolinite platelets, rather than on their basal planes. These experimental observations of the location of ice nucleation provide direct information for further theoretical chemistry predictions of ice formation on kaolinite.

11.
Environ Sci Technol ; 50(10): 5172-80, 2016 05 17.
Article in English | MEDLINE | ID: mdl-27088454

ABSTRACT

Quantifying how atmospheric particles interact with water vapor is critical for understanding the effects of aerosols on climate. We present a novel method to measure the mass-based hygroscopicity of particles while characterizing their elemental and carbon functional group compositions. Since mass-based hygroscopicity is insensitive to particle geometry, it is advantageous for probing the hygroscopic behavior of atmospheric particles, which can have irregular morphologies. Combining scanning electron microscopy with energy dispersive X-ray analysis (SEM/EDX), scanning transmission X-ray microscopy (STXM) analysis, and in situ STXM humidification experiments, this method was validated using laboratory-generated, atmospherically relevant particles. Then, the hygroscopicity and elemental composition of 15 complex atmospheric particles were analyzed by leveraging quantification of C, N, and O from STXM, and complementary elemental quantification from SEM/EDX. We found three types of hygroscopic responses, and correlated high hygroscopicity with Na and Cl content. The mixing state of 158 other particles from the sample broadly agreed with those of the humidified particles, indicating the potential to infer atmospheric hygroscopic behavior from a selected subset of particles. These methods offer unique quantitative capabilities to characterize and correlate the hygroscopicity and chemistry of individual submicrometer atmospheric particles.


Subject(s)
Particle Size , Wettability , Aerosols/chemistry , Carbon , Microscopy, Electron, Scanning
SELECTION OF CITATIONS
SEARCH DETAIL
...