Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Digit Health ; 10: 20552076231220450, 2024.
Article in English | MEDLINE | ID: mdl-38188863

ABSTRACT

Objective: The objective of this study was to assess the feasibility of monitoring and diagnosing compromised walking motion in the frontal plane, particularly in persons living with the chronic effects of stroke (PwCS). The study aimed to determine whether active control of walking in the frontal plane could be monitored and provide diagnostic insights into compensations made by PwCS during community living. Methods: The study recruited PwCS with noticeable walking asymmetries and employed a monitoring method to assess frontal plane motion. Monitoring was conducted both within a single assessment and between assessments. The study aimed to uncover baseline data and diagnostic information about active control in chronic stroke survivors. Data were collected using sensors during 6 minutes of walking and compared between the paretic and non-paretic legs. Results: The study demonstrated the feasibility of monitoring frontal plane motion and diagnosing disturbed endpoint control (p < 0.0125) in chronic stroke survivors when comparing the paretic leg to the non-paretic leg. A greater variability was observed in the paretic leg (p < 0.0125), and sensors were able to diagnose a stronger coupling of the body with its endpoint on the paretic side (p < 0.0125). Similar results were obtained when monitoring was conducted over a six-minute walking period, and no significant diagnostic differences were found between the two monitoring assessments. Monitoring did not reveal performance fatigue or debilitation over time. Conclusions: This study's findings indicate that monitoring frontal plane motion is a feasible approach for diagnosing compromised walking motion. The results suggest that individuals with walking asymmetries, exhibit differences in endpoint control and variability between their paretic and non-paretic legs. These insights could contribute to more effective rehabilitation strategies and highlight the potential for monitoring compensations during various activities of daily living.

2.
J Neurol Sci ; 449: 120647, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37100017

ABSTRACT

We examined whether conflicting visual and non-visual information leads to gait abnormalities and how the subthalamic deep brain stimulation (STN DBS) influences gait dysfunction in Parkinson's disease (PD). We used a motion capture system to measure the kinematics of the lower limbs during treadmill walking in immersive virtual reality. The visual information provided in the virtual reality paradigm was modulated to create a mismatch between the optic-flow velocity of the visual scene and the walking speed on the treadmill. In each mismatched condition, we calculated the step duration, step length, step phase, step height, and asymmetries. The key finding of our study was that mismatch between treadmill walking speed and the optic-flow velocity did not consistently alter gait parameters in PD. We also found that STN DBS improved the PD gait pattern by changing the stride length and step height. The effects on phase and left/right asymmetry were not statistically significant. The DBS parameters and location also determined its effects on gait. Statistical effects on stride length and step height were noted when the DBS volume of activated tissue (VTA) was in the dorsal aspect of the subthalamus. The statistically significant effects of STN DBS was present when VTA significantly overlapped with MR tractogrphically measured motor and pre-motor hyperdirect pathways. In summary, our results provide novel insight into ways for controlling walking behavior in PD using STN DBS.


Subject(s)
Deep Brain Stimulation , Parkinson Disease , Subthalamic Nucleus , Humans , Parkinson Disease/complications , Parkinson Disease/therapy , Deep Brain Stimulation/methods , Subthalamic Nucleus/physiology , Gait/physiology , Walking
4.
Brain Sci ; 12(6)2022 May 28.
Article in English | MEDLINE | ID: mdl-35741586

ABSTRACT

Gait deficits are often persistent after stroke, and current rehabilitation methods do not restore normal gait for everyone. Targeted methods of focused gait therapy that meet the individual needs of each stroke survivor are needed. Our objective was to develop and test a combination protocol of simultaneous brain stimulation and focused stance phase training for people with chronic stroke (>6 months). We combined Transcranial Direct Current Stimulation (tDCS) with targeted stance phase therapy using Virtual Reality (VR)-assisted treadmill training and overground practice. The training was guided by motor learning principles. Five users (>6 months post-stroke with stance phase gait deficits) completed 10 treatment sessions. Each session began with 30 min of VR-assisted treadmill training designed to apply motor learning (ML)-based stance phase targeted practice. During the first 15 min of the treadmill training, bihemispheric tDCS was simultaneously delivered. Immediately after, users completed 30 min of overground (ML)-based gait training. The outcomes included the feasibility of protocol administration, gait speed, Timed Up and Go (TUG), Functional Gait Assessment (FGA), paretic limb stance phase control capability, and the Fugl−Meyer for lower extremity coordination (FMLE). The changes in the outcome measures (except the assessments of stance phase control capability) were calculated as the difference from baseline. Statistically and clinically significant improvements were observed after 10 treatment sessions in gait speed (0.25 ± 0.11 m/s) and FGA (4.55 ± 3.08 points). Statistically significant improvements were observed in TUG (2.36 ± 3.81 s) and FMLE (4.08 ± 1.82 points). A 10-session intervention combining tDCS and ML-based task-specific gait rehabilitation was feasible and produced clinically meaningful improvements in lower limb function in people with chronic gait deficits after stroke. Because only five users tested the new protocol, the results cannot be generalized to the whole population. As a contribution to the field, we developed and tested a protocol combining brain stimulation and ML-based stance phase training for individuals with chronic stance phase deficits after stroke. The protocol was feasible to administer; statistically and/or clinically significant improvements in gait function across an array of gait performance measures were observed with this relatively short treatment protocol.

5.
J Med Eng Technol ; 46(5): 393-401, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35674709

ABSTRACT

Vibration, a potent mechanical stimulus for activating muscle spindle primary afferents, may improve gait performance in persons with multiple sclerosis (MS), but has yet to be developed and deployed for multiple leg muscles with application during walking training. This study explored the development of a cyclic focal muscle vibration (FMV) system, and the deployment feasibility to correct MS walking swing phase deficits in order to determine whether this intervention warrants comprehensive study. The system was deployed during twelve, two-hour sessions of walking with cyclic FMV over six weeks. Participants served as their own control. Blood pressure, heart rate, walking speed, kinematics (peak hip, knee and ankle angles during swing), toe clearance, and step length were measured before and after deployment with blood pressure and heart rate monitored during deployment. During system deployment, there were no untoward sensations and physiological changes in blood pressure and heart rate, and volitional improvements were found in walking speed, improved swing phase kinematics, toe clearance and step length. This FMV training system was developed and deployed to improve joint flexion during walking in those with MS, and it demonstrated feasibility and benefits. Further study will determine the most effective vibration frequency and dose, carryover effects, and those most likely to benefit from this intervention.


Subject(s)
Multiple Sclerosis , Vibration , Biomechanical Phenomena , Gait/physiology , Humans , Muscle, Skeletal/physiology , Walking/physiology
6.
Med Biol Eng Comput ; 51(10): 1069-77, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23884905

ABSTRACT

Mechanical analysis of movement plays an important role in clinical management of neurological and orthopedic conditions. There has been increasing interest in performing movement analysis in real-time, to provide immediate feedback to both therapist and patient. However, such work to date has been limited to single-joint kinematics and kinetics. Here we present a software system, named human body model (HBM), to compute joint kinematics and kinetics for a full body model with 44 degrees of freedom, in real-time, and to estimate length changes and forces in 300 muscle elements. HBM was used to analyze lower extremity function during gait in 12 able-bodied subjects. Processing speed exceeded 120 samples per second on standard PC hardware. Joint angles and moments were consistent within the group, and consistent with other studies in the literature. Estimated muscle force patterns were consistent among subjects and agreed qualitatively with electromyography, to the extent that can be expected from a biomechanical model. The real-time analysis was integrated into the D-Flow system for development of custom real-time feedback applications and into the gait real-time analysis interactive lab system for gait analysis and gait retraining.


Subject(s)
Biomechanical Phenomena/physiology , Models, Biological , Movement/physiology , Muscle, Skeletal/physiology , Adult , Computer Simulation , Computer Systems , Female , Gait/physiology , Humans , Male , Range of Motion, Articular , Software , User-Computer Interface
7.
Phys Med Rehabil Clin N Am ; 24(2): 355-70, 2013 May.
Article in English | MEDLINE | ID: mdl-23598268

ABSTRACT

Walking is possible for many patients with a spinal cord injury. Avenues enabling walking include braces, robotics and FES. Among the benefits are improved musculoskeletal and mental health, however unrealistic expectations may lead to negative changes in quality of life. Use rigorous assessment standards to gauge the improvement of walking during the rehabilitation process, but also yearly. Continued walking after discharge may be limited by challenges, such as lack of accessibility in and outside the home, and complications, such as shoulder pain or injuries from falls. It is critical to determine the risks and benefits of walking for each patient.


Subject(s)
Activities of Daily Living , Gait Disorders, Neurologic , Gait/physiology , Spinal Cord Injuries , Walking/physiology , Gait Disorders, Neurologic/etiology , Gait Disorders, Neurologic/physiopathology , Gait Disorders, Neurologic/rehabilitation , Humans , Spinal Cord Injuries/complications , Spinal Cord Injuries/physiopathology , Spinal Cord Injuries/rehabilitation
8.
J Rehabil Res Dev ; 47(1): 7-16, 2010.
Article in English | MEDLINE | ID: mdl-20437323

ABSTRACT

The purpose of this single-subject study was to determine the neurotherapeutic and neuroprosthetic effects of an implanted functional electrical stimulation (FES) system designed to facilitate walking in an individual with a longstanding motor and sensory incomplete spinal cord injury. An implanted pulse generator and eight intramuscular stimulating electrodes were installed unilaterally, activating weak or paralyzed hip flexors, hip and knee extensors, and ankle dorsiflexors during 36 sessions of gait training with FES. The neurotherapeutic effects were assessed by a comparison of pre- and posttraining volitional walking. The neuroprosthetic effects were assessed by a comparison of posttraining volitional and FES-assisted walking. Treatment resulted in significant (p < 0.005) volitional improvements in 6-minute walking distance and speed, speed during maximum walk, double support time, and 10 m walking speed. Posttraining FES-assisted walking resulted in significant additional improvements in all these measures, except 10 m walking speed. When the subject was using FES-assisted gait, maximum walking distance, peak knee flexion in swing, peak ankle dorsiflexion in swing, and knee extension moment also significantly increased. Neuroprosthetic gains were sufficient to enable the subject to advance from household ambulation to limited community ambulation. Additionally, the subject could perform multiple walks per day when using FES-assisted gait, which was impossible with volitional effort alone.


Subject(s)
Electric Stimulation Therapy/instrumentation , Spinal Cord Injuries/rehabilitation , Walking , Electrodes, Implanted , Gait , Humans , Lewis Blood Group Antigens , Muscle, Skeletal/physiopathology , Physical Therapy Modalities , Spinal Cord Injuries/physiopathology
9.
Med Sci Sports Exerc ; 36(5): 838-44, 2004 May.
Article in English | MEDLINE | ID: mdl-15126719

ABSTRACT

UNLABELLED: Repetitive impacts encountered during locomotion may be modified by footwear and/or surface. Changes in kinematics may occur either as a direct response to altered mechanical conditions or over time as active adaptations. PURPOSE: : To investigate how midsole hardness, surface stiffness, and running duration influence running kinematics. METHODS: In the first of two experiments, 12 males ran at metabolic steady state under six conditions; combinations of midsole hardness (40 Shore A, 70 Shore A), and surface stiffness (100 kN x m, 200 kN x m, and 350 kN x m). In the second experiment, 10 males ran for 30 min on a 12% downhill grade. In both experiments, subjects ran at 3.4 m x s on a treadmill while 2-D hip, knee, and ankle kinematics were determined using high-speed videography (200 Hz). Oxygen cost and heart rate data were also collected. Kinematic adaptations to midsole, surface, and running time were studied. RESULTS: Stance time, stride cycle time, and maximal knee flexion were invariant across conditions in each experiment. Increased midsole hardness resulted in greater peak ankle dorsiflexion velocity (P = 0.0005). Increased surface stiffness resulted in decreased hip and knee flexion at contact, reduced maximal hip flexion, and increased peak angular velocities of the hip, knee, and ankle. Over time, hip flexion at contact decreased, plantarflexion at toe-off increased, and peak dorsiflexion and plantarflexion velocity increased. CONCLUSION: Lower-extremity kinematics adapted to increased midsole hardness, surface stiffness, and running duration. Changes in limb posture at impact were interpreted as active adaptations that compensate for passive mechanical effects. The adaptations appeared to have the goal of minimizing metabolic cost at the expense of increased exposure to impact shock.


Subject(s)
Adaptation, Physiological , Running/physiology , Shoes , Adult , Analysis of Variance , Biomechanical Phenomena , Heart Rate/physiology , Humans , Leg/physiology , Male , Oxygen Consumption/physiology , Surface Properties , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...