Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biochemistry ; 62(22): 3188-3205, 2023 11 21.
Article in English | MEDLINE | ID: mdl-37924287

ABSTRACT

Intracellular leucine aminopeptidases (PepA) are metalloproteases from the family M17. These enzymes catalyze peptide bond cleavage, removing N-terminal residues from peptide and protein substrates, with consequences for protein homeostasis and quality control. While general mechanistic studies using model substrates have been conducted on PepA enzymes from various organisms, specific information about their substrate preferences and promiscuity, choice of metal, activation mechanisms, and the steps that limit steady-state turnover remain unexplored. Here, we dissected the catalytic and chemical mechanisms of PaPepA: a leucine aminopeptidase from Pseudomonas aeruginosa. Cleavage assays using peptides and small-molecule substrate mimics allowed us to propose a mechanism for catalysis. Steady-state and pre-steady-state kinetics, pH rate profiles, solvent kinetic isotope effects, and biophysical techniques were used to evaluate metal binding and activation. This revealed that metal binding to a tight affinity site is insufficient for enzyme activity; binding to a weaker affinity site is essential for catalysis. Progress curves for peptide hydrolysis and crystal structures of free and inhibitor-bound PaPepA revealed that PaPepA cleaves peptide substrates in a processive manner. We propose three distinct modes for activity regulation: tight packing of PaPepA in a hexameric assembly controls substrate length and reaction processivity; the product leucine acts as an inhibitor, and the high concentration of metal ions required for activation limits catalytic turnover. Our work uncovers catalysis by a metalloaminopeptidase, revealing the intricacies of metal activation and substrate selection. This will pave the way for a deeper understanding of metalloenzymes and processive peptidases/proteases.


Subject(s)
Leucyl Aminopeptidase , Peptides , Leucine/metabolism , Leucyl Aminopeptidase/chemistry , Leucyl Aminopeptidase/metabolism , Peptides/metabolism , Hydrolysis , Metals/metabolism , Catalysis , Kinetics , Substrate Specificity
2.
Nat Chem Biol ; 19(9): 1158-1166, 2023 09.
Article in English | MEDLINE | ID: mdl-37386135

ABSTRACT

Pseudomonas aeruginosa is an opportunistic pathogen that causes serious illness, especially in immunocompromised individuals. P. aeruginosa forms biofilms that contribute to growth and persistence in a wide range of environments. Here we investigated the aminopeptidase, P. aeruginosa aminopeptidase (PaAP) from P. aeruginosa, which is highly abundant in the biofilm matrix. PaAP is associated with biofilm development and contributes to nutrient recycling. We confirmed that post-translational processing was required for activation and PaAP is a promiscuous aminopeptidase acting on unstructured regions of peptides and proteins. Crystal structures of wild-type enzymes and variants revealed the mechanism of autoinhibition, whereby the C-terminal propeptide locks the protease-associated domain and the catalytic peptidase domain into a self-inhibited conformation. Inspired by this, we designed a highly potent small cyclic-peptide inhibitor that recapitulates the deleterious phenotype observed with a PaAP deletion variant in biofilm assays and present a path toward targeting secreted proteins in a biofilm context.


Subject(s)
Aminopeptidases , Pseudomonas aeruginosa , Aminopeptidases/metabolism , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/metabolism , Peptides, Cyclic/metabolism , Biofilms , Peptide Hydrolases/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
3.
Commun Chem ; 5: 101, 2022 Aug 25.
Article in English | MEDLINE | ID: mdl-36518199

ABSTRACT

Cyclodipeptide synthases (CDPSs) generate a wide range of cyclic dipeptides using aminoacylated tRNAs as substrates. Histidine-containing cyclic dipeptides have important biological activities as anticancer and neuroprotective molecules. Out of the 120 experimentally validated CDPS members, only two are known to accept histidine as a substrate yielding cyclo(His-Phe) and cyclo(His-Pro) as products. It is not fully understood how CDPSs select their substrates, and we must rely on bioprospecting to find new enzymes and novel bioactive cyclic dipeptides. Here, we developed an in vitro system to generate an extensive library of molecules using canonical and non-canonical amino acids as substrates, expanding the chemical space of histidine-containing cyclic dipeptide analogues. To investigate substrate selection we determined the structure of a cyclo(His-Pro)-producing CDPS. Three consecutive generations harbouring single, double and triple residue substitutions elucidated the histidine selection mechanism. Moreover, substrate selection was redefined, yielding enzyme variants that became capable of utilising phenylalanine and leucine. Our work successfully engineered a CDPS to yield different products, paving the way to direct the promiscuity of these enzymes to produce molecules of our choosing.

4.
Nat Commun ; 12(1): 1228, 2021 02 23.
Article in English | MEDLINE | ID: mdl-33623032

ABSTRACT

Bacterial hybrid malic enzymes (MaeB grouping, multidomain) catalyse the transformation of malate to pyruvate, and are a major contributor to cellular reducing power and carbon flux. Distinct from other malic enzyme subtypes, the hybrid enzymes are regulated by acetyl-CoA, a molecular indicator of the metabolic state of the cell. Here we solve the structure of a MaeB protein, which reveals hybrid enzymes use the appended phosphotransacetylase (PTA) domain to form a hexameric sensor that communicates acetyl-CoA occupancy to the malic enzyme active site, 60 Å away. We demonstrate that allostery is governed by a large-scale rearrangement that rotates the catalytic subunits 70° between the two states, identifying MaeB as a new model enzyme for the study of ligand-induced conformational change. Our work provides the mechanistic basis for metabolic control of hybrid malic enzymes, and identifies inhibition-insensitive variants that may find utility in synthetic biology.


Subject(s)
Bdellovibrio bacteriovorus/enzymology , Malate Dehydrogenase/metabolism , Acetyl Coenzyme A/metabolism , Allosteric Regulation , Apoproteins/chemistry , Binding Sites , Biocatalysis , Kinetics , Malate Dehydrogenase/chemistry , Models, Molecular , Motion , Protein Domains
SELECTION OF CITATIONS
SEARCH DETAIL
...