Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 132(15): 155102, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38683000

ABSTRACT

We present the first experimental study of plasmoid formation in a magnetic reconnection layer undergoing rapid radiative cooling, a regime relevant to extreme astrophysical plasmas. Two exploding aluminum wire arrays, driven by the Z machine, generate a reconnection layer (S_{L}≈120) in which the cooling rate far exceeds the hydrodynamic transit rate (τ_{hydro}/τ_{cool}>100). The reconnection layer generates a transient burst of >1 keV x-ray emission, consistent with the formation and subsequent rapid cooling of the layer. Time-gated x-ray images show fast-moving (up to 50 km s^{-1}) hotspots in the layer, consistent with the presence of plasmoids in 3D resistive magnetohydrodynamic simulations. X-ray spectroscopy shows that these hotspots generate the majority of Al K-shell emission (around 1.6 keV) prior to the onset of cooling, and exhibit temperatures (170 eV) much greater than that of the plasma inflows and the rest of the reconnection layer, thus providing insight into the generation of high-energy radiation in radiatively cooled reconnection events.

2.
Rev Sci Instrum ; 94(8)2023 Aug 01.
Article in English | MEDLINE | ID: mdl-38065184

ABSTRACT

An x-ray imaging scheme using spherically bent crystals was implemented on the Z-machine to image x rays emitted by the hot, dense plasma generated by a Magnetized Liner Inertial Fusion (MagLIF) target. This diagnostic relies on a spherically bent crystal to capture x-ray emission over a narrow spectral range (<15 eV), which is established by a limiting aperture placed on the Rowland circle. The spherical crystal optic provides the necessary high-throughput and large field-of-view required to produce a bright image over the entire, one-cm length of the emitting column of a plasma. The average spatial resolution was measured and determined to be 18 µm for the highest resolution configuration. With this resolution, the radial size of the stagnation column can be accurately determined and radial structures, such as bifurcations in the column, are clearly resolved. The success of the spherical-crystal imager has motivated the implementation of a new, two-crystal configuration for identifying sources of spectral line emission using a differential imaging technique.

3.
Rev Sci Instrum ; 94(5)2023 May 01.
Article in English | MEDLINE | ID: mdl-37184347

ABSTRACT

We report on progress implementing and testing cryogenically cooled platforms for Magnetized Liner Inertial Fusion (MagLIF) experiments. Two cryogenically cooled experimental platforms were developed: an integrated platform fielded on the Z pulsed power generator that combines magnetization, laser preheat, and pulsed-power-driven fuel compression and a laser-only platform in a separate chamber that enables measurements of the laser preheat energy using shadowgraphy measurements. The laser-only experiments suggest that ∼89% ± 10% of the incident energy is coupled to the fuel in cooled targets across the energy range tested, significantly higher than previous warm experiments that achieved at most 67% coupling and in line with simulation predictions. The laser preheat configuration was applied to a cryogenically cooled integrated experiment that used a novel cryostat configuration that cooled the MagLIF liner from both ends. The integrated experiment, z3576, coupled 2.32 ± 0.25 kJ preheat energy to the fuel, the highest to-date, demonstrated excellent temperature control and nominal current delivery, and produced one of the highest pressure stagnations as determined by a Bayesian analysis of the data.

4.
Rev Sci Instrum ; 93(11): 113538, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36461482

ABSTRACT

Optimum performance in x-ray imaging and spectroscopy of plasmas with bent crystals is achievable only when the crystal reflects the x rays theoretically perfectly across its entire surface. However, typical thin quartz (101̄1) crystal samples kept flat by direct attachment to a flat substrate reflect 8 keV x rays differently across their surface, on a scale comparable to the ideal rocking curve. Additional processing improves the uniformity. Irradiation of flat crystals with collimated, monochromatic x rays in rocking curve topography shows such problems directly, with microradian resolution. Nonuniform x-ray reflection is more difficult to document for strongly bent crystals because, then, monochromatic, collimated x rays satisfy the Bragg condition only along a narrow stripe that may be too narrow to resolve with the available cameras. However, it can be resolved with a knife edge that moves through the reflected x rays with the necessary spatial precision as demonstrated here for a bent silicon crystal. This shows qualitatively similar imperfections in the reflection as flat quartz and as the bent quartz analyzers reported on previously with lower resolution.

5.
Rev Sci Instrum ; 93(10): 103532, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36319352

ABSTRACT

In a series of Magnetized Liner Inertial Fusion (MagLIF) experiments performed at the Z pulsed power accelerator of Sandia National Laboratories, beryllium liners filled with deuterium gas pressures in the 4-8 atm range and a tracer amount of krypton were imploded. At the collapse of the cylindrical implosion, temperatures in the 1-3 keV range and atom number densities of ∼1023 cm-3 were expected. The plasma was magnetized with a 10 T axial magnetic field. Krypton was added to the fuel for diagnosing implosion plasma conditions. Krypton K-shell line emission was recorded with the CRITR time-integrated transmission crystal x-ray spectrometer. The observation shows n = 2 to n = 1 line emissions in B-, Be-, Li-, and He-like Kr ions and is characteristic of the highest electron temperatures achieved in the thermonuclear plasma. Detailed modeling of the krypton atomic kinetics and radiation physics permits us to interpret the composite spectral feature, and it demonstrates that the spectrum is temperature sensitive. We discuss temperatures extracted from the krypton data analysis for experiments performed with several filling pressures.

6.
Phys Rev Lett ; 125(15): 155002, 2020 Oct 09.
Article in English | MEDLINE | ID: mdl-33095639

ABSTRACT

We present experimental results from the first systematic study of performance scaling with drive parameters for a magnetoinertial fusion concept. In magnetized liner inertial fusion experiments, the burn-averaged ion temperature doubles to 3.1 keV and the primary deuterium-deuterium neutron yield increases by more than an order of magnitude to 1.1×10^{13} (2 kJ deuterium-tritium equivalent) through a simultaneous increase in the applied magnetic field (from 10.4 to 15.9 T), laser preheat energy (from 0.46 to 1.2 kJ), and current coupling (from 16 to 20 MA). Individual parametric scans of the initial magnetic field and laser preheat energy show the expected trends, demonstrating the importance of magnetic insulation and the impact of the Nernst effect for this concept. A drive-current scan shows that present experiments operate close to the point where implosion stability is a limiting factor in performance, demonstrating the need to raise fuel pressure as drive current is increased. Simulations that capture these experimental trends indicate that another order of magnitude increase in yield on the Z facility is possible with additional increases of input parameters.

7.
Phys Rev E ; 102(2-1): 023209, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32942382

ABSTRACT

We present two-dimensional temperature measurements of magnetized and unmagnetized plasma experiments performed at Z relevant to the preheat stage in magnetized liner inertial fusion. The deuterium gas fill was doped with a trace amount of argon for spectroscopy purposes, and time-integrated spatially resolved spectra and narrow-band images were collected in both experiments. The spectrum and image data were included in two separate multiobjective analysis methods to extract the electron temperature spatial distribution T_{e}(r,z). The results indicate that the magnetic field increases T_{e}, the axial extent of the laser heating, and the magnitude of the radial temperature gradients. Comparisons with simulations reveal that the simulations overpredict the extent of the laser heating and underpredict the temperature. Temperature gradient scale lengths extracted from the measurements also permit an assessment of the importance of nonlocal heat transport.

8.
Nat Commun ; 9(1): 1564, 2018 04 19.
Article in English | MEDLINE | ID: mdl-29674695

ABSTRACT

Energy-transport effects can alter the structure that develops as a supernova evolves into a supernova remnant. The Rayleigh-Taylor instability is thought to produce structure at the interface between the stellar ejecta and the circumstellar matter, based on simple models and hydrodynamic simulations. Here we report experimental results from the National Ignition Facility to explore how large energy fluxes, which are present in supernovae, affect this structure. We observed a reduction in Rayleigh-Taylor growth. In analyzing the comparison with supernova SN1993J, a Type II supernova, we found that the energy fluxes produced by heat conduction appear to be larger than the radiative energy fluxes, and large enough to have dramatic consequences. No reported astrophysical simulations have included radiation and heat conduction self-consistently in modeling supernova remnants and these dynamics should be noted in the understanding of young supernova remnants.

9.
Rev Sci Instrum ; 88(10): 103503, 2017 Oct.
Article in English | MEDLINE | ID: mdl-29092482

ABSTRACT

Many experiments on Sandia National Laboratories' Z Pulsed Power Facility-a 30 MA, 100 ns rise-time, pulsed-power driver-use a monochromatic quartz crystal backlighter system at 1.865 keV (Si Heα) or 6.151 keV (Mn Heα) x-ray energy to radiograph an imploding liner (cylindrical tube) or wire array z-pinch. The x-ray source is generated by the Z-Beamlet laser, which provides two 527-nm, 1 kJ, 1-ns laser pulses. Radiographs of imploding, thick-walled beryllium liners at convergence ratios CR above 15 [CR=ri(0)/ri(t)] using the 6.151-keV backlighter system were too opaque to identify the inner radius ri of the liner with high confidence, demonstrating the need for a higher-energy x-ray radiography system. Here, we present a 7.242 keV backlighter system using a Ge(335) spherical crystal with the Co Heα resonance line. This system operates at a similar Bragg angle as the existing 1.865 keV and 6.151 keV backlighters, enhancing our capabilities for two-color, two-frame radiography without modifying the system integration at Z. The first data taken at Z include 6.2-keV and 7.2-keV two-color radiographs as well as radiographs of low-convergence (CR about 4-5), high-areal-density liner implosions.

10.
Rev Sci Instrum ; 87(11): 11E301, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27910495

ABSTRACT

Fuji TR image plate is frequently used as a replacement detector medium for x-ray imaging and spectroscopy diagnostics at NIF, Omega, and Z facilities. However, the familiar Fuji BAS line of image plate scanners is no longer supported by the industry, and so a replacement scanning system is needed. While the General Electric Typhoon line of scanners could replace the Fuji systems, the shift away from photo stimulated luminescence units to 16-bit grayscale Tag Image File Format (TIFF) leaves a discontinuity when comparing data collected from both systems. For the purposes of quantitative spectroscopy, a known unit of intensity applied to the grayscale values of the TIFF is needed. The DITABIS Super Micron image plate scanning system was tested and shown to potentially rival the resolution and dynamic range of Kodak RAR 2492 x-ray film. However, the absolute sensitivity of the scanner is unknown. In this work, a methodology to cross calibrate Fuji TR image plate and the absolutely calibrated Kodak RAR 2492 x-ray film is presented. Details of the experimental configurations used are included. An energy dependent scale factor to convert Fuji TR IP scanned on a DITABIS Super Micron scanner from 16-bit grayscale TIFF to intensity units (i.e., photons per square micron) is discussed.

11.
Rev Sci Instrum ; 86(4): 043504, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25933859

ABSTRACT

The application of a space-resolving spectrometer to X-ray Thomson Scattering (XRTS) experiments has the potential to advance the study of warm dense matter. This has motivated the design of a spherical crystal spectrometer, which is a doubly focusing geometry with an overall high sensitivity and the capability of providing high-resolution, space-resolved spectra. A detailed analysis of the image fluence and crystal throughput in this geometry is carried out and analytical estimates of these quantities are presented. This analysis informed the design of a new spectrometer intended for future XRTS experiments on the Z-machine. The new spectrometer collects 6 keV x-rays with a spherically bent Ge (422) crystal and focuses the collected x-rays onto the Rowland circle. The spectrometer was built and then tested with a foam target. The resulting high-quality spectra prove that a spherical spectrometer is a viable diagnostic for XRTS experiments.

12.
Phys Rev Lett ; 113(15): 155003, 2014 Oct 10.
Article in English | MEDLINE | ID: mdl-25375714

ABSTRACT

This Letter presents results from the first fully integrated experiments testing the magnetized liner inertial fusion concept [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010)], in which a cylinder of deuterium gas with a preimposed 10 Taxial magnetic field is heated by Z beamlet, a 2.5 kJ, 1 TW laser, and magnetically imploded by a 19 MA, 100 ns rise time current on the Z facility. Despite a predicted peak implosion velocity of only 70 km = s, the fuel reaches a stagnation temperature of approximately 3 keV, with T(e) ≈ T(i), and produces up to 2 x 10(12) thermonuclear deuterium-deuterium neutrons. X-ray emission indicates a hot fuel region with full width at half maximum ranging from 60 to 120 µm over a 6 mm height and lasting approximately 2 ns. Greater than 10(10) secondary deuterium-tritium neutrons were observed, indicating significant fuel magnetization given that the estimated radial areal density of the plasma is only 2 mg = cm(2).

13.
Phys Rev Lett ; 109(15): 155002, 2012 Oct 12.
Article in English | MEDLINE | ID: mdl-23102317

ABSTRACT

Using solid, machined X-pinch targets driven by currents rising from 0 to 5-6 MA in 60 ns, we observed bright spots of 5-9-keV continuum radiation from 5±2-µm diameter regions. The >6-keV radiation is emitted in about 0.4 ns, and the bright spots are roughly 75 times brighter than the bright spots measured at 1 MA. A total x-ray power of 10 TW peak and yields of 165±20 kJ were emitted from a 3-mm height. The 3-5-keV continuum radiation had a 50-90-GW peak power and 0.15-0.35-kJ yield. The continuum is plausibly from a 1275±75-eV blackbody or alternatively from a 3500±500-eV bremsstrahlung source.

14.
Rev Sci Instrum ; 81(10): 10E310, 2010 Oct.
Article in English | MEDLINE | ID: mdl-21034009

ABSTRACT

Microchannel plates are a central component of the x-ray framing cameras used as analog imagers in many plasma experiment diagnostic systems. The microchannel plate serves as an amplifying element, increasing the electronic signal from incident radiation by factors of 10(3)-10(5), with a broad pulse-height distribution. Seeking to optimize the photon-to-electron conversion efficiency and noise distribution of x-ray cameras, we will characterize the pulse-height distribution of the electron output from a single microchannel plate. Replacing the framing camera's phosphor-coated fiber optic screen with a charge-collection plate and coupling to a low-noise multichannel analyzer, we quantified the distribution in the total charge generated per photon event. The electronically measured pulse height distribution is used to estimate the signal-to-noise ratio of radiographic images from framing cameras.

15.
Phys Rev Lett ; 103(8): 085002, 2009 Aug 21.
Article in English | MEDLINE | ID: mdl-19792732

ABSTRACT

Experimental study of a shock-decelerated ablation front is reported. A planar solid plastic target is accelerated by a laser across a vacuum gap and collides with a lower-density plastic foam layer. While the target is accelerated, a fast Rayleigh-Taylor (RT) growth of the seeded single-mode perturbation at the ablation front is observed. After the collision, the velocity of the ablation front is seen to remain constant. The reshock quenches the RT growth but does not trigger any Richtmyer-Meshkov growth at the ablation front, which is shown to be consistent with both theory and simulations.

16.
Phys Rev Lett ; 103(4): 045005, 2009 Jul 24.
Article in English | MEDLINE | ID: mdl-19659365

ABSTRACT

A laser initiated experiment is described in which an unstable plasma shear layer is produced by driving a blast wave along a plastic surface with sinusoidal perturbations. In response to the vorticity deposited and the shear flow established by the blast wave, the interface rolls up into large vortices characteristic of the Kelvin-Helmholtz instability. The experiment used x-ray radiography to capture the first well-resolved images of Kelvin-Helmholtz vortices in a high-energy-density plasma.

17.
Rev Sci Instrum ; 79(10): 10E912, 2008 Oct.
Article in English | MEDLINE | ID: mdl-19044567

ABSTRACT

X-ray framing cameras, employing microchannel plates (MCPs) for detection and signal amplification, play a key role in research in high-energy-density physics. These instruments convert radiographic x-rays into electrons produced by plasma during such experiments into electrons that are amplified in the channels and then detected by a phosphor material. The separation of detection from signal amplification offers potential improvements in sensitivity and noise properties. We have implemented a suspended Au transmission photocathode (160 A thick) on a MCP and are evaluating it using a 1.5 keV Al K alpha x-ray source. We find an approximately twofold increase in the ratio of detected events to incident photons when the photocathode-to-MCP voltage difference is sufficiently large. Our calculations indicate that this increase is probably caused by a combination of signal produced by the photocathode and an increase in the efficiency of detection of x-rays that reach the MCP surface through modification of the local electric field.

18.
Regul Pept ; 40(3): 409-19, 1992 Aug 13.
Article in English | MEDLINE | ID: mdl-1438983

ABSTRACT

We report here the discovery of a unique and novel angiotensin binding site and peptide system based upon the C-terminal 3-8 hexapeptide fragment of angiotensin II (NH3(+)-Val-Tyr-Ile-His-Pro-Phe-COO-) (AII(3-8) (AIV)). This fragment binds saturably, reversibly, specifically, and with high affinity to membrane-binding sites in a variety of tissues and from many species. The binding site is pharmacologically distinct from the classic angiotensin receptors (AT1 or AT2) displaying low affinity for the known agonists (AII and AIII) and antagonist (Sar1,Ile8-AII). Although a definitive function has not been assigned to this system in many of the tissues in which it resides, AIV's interaction with endothelial cells may involve a role in endothelial cell-dependent vasodilation. Consequent to this action, AIV is a potent stimulator of renal cortical blood flow.


Subject(s)
Angiotensin II/analogs & derivatives , Cell Membrane/metabolism , Receptors, Angiotensin/metabolism , Adrenal Cortex/metabolism , Amino Acid Sequence , Angiotensin II/metabolism , Angiotensin II/pharmacology , Animals , Binding Sites , Blood Pressure/drug effects , Brain/metabolism , Cattle , Guinea Pigs , Molecular Sequence Data , Radioligand Assay , Renal Circulation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...