Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-39268696

ABSTRACT

Cooking and cleaning are common sources of indoor air pollutants, including volatile organic compounds (VOCs). The chemical fate of VOCs indoors is determined by both gas-phase and multi-phase chemistry, and can result in the formation of potentially hazardous secondary pollutants. Chemical interactions at the gas-surface boundary play an important role in indoor environments due to the characteristically high surface area to volume ratios (SAVs). This study first characterises the VOC emissions from a typical cooking and cleaning activity in a semi-realistic domestic kitchen, using real-time measurements. While cooking emitted a larger amount of VOCs overall, both cooking and cleaning were sources of chemically reactive monoterpenes (peak mixing ratios 7 ppb and 2 ppb, respectively). Chemical processing of the VOC emissions from sequential cooking and cleaning activities was then simulated in a kitchen using a detailed chemical model. Results showed that ozone (O3) deposition was most effective onto plastic and soft furnishings, while wooden surfaces were the most effective at producing formaldehyde following multi-phase chemistry. Subsequent modelling of cooking and cleaning emissions using a range of measured kitchen SAVs revealed that indoor oxidant levels and the subsequent chemistry, are strongly influenced by the total and material-specific SAV of the room. O3 mixing ratios ranged from 1.3-7.8 ppb across 9 simulated kitchens, with higher concentrations of secondary pollutants observed at higher O3 concentration. Increased room volume, decreased total SAV, decreased SAVs of plastic and soft furnishings, and increased wood SAV contributed to elevated formaldehyde and total peroxyacetyl nitrates (PANs) mixing ratios, of up to 1548 ppt and 643 ppt, respectively, following cooking and cleaning. Therefore, the size and material composition of indoor environments has the potential to impact the chemical processing of VOC emissions from common occupant activities.

2.
Environ Sci Process Impacts ; 26(2): 436-450, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38258874

ABSTRACT

Cleaning products emit a range of volatile organic compounds (VOCs), including some which are hazardous or can undergo chemical transformations to generate harmful secondary pollutants. In recent years, "green" cleaners have become increasingly popular, with an implicit assumption that these are better for our health and/or the environment. However, there is no strong evidence to suggest that they are better for indoor air quality compared to regular products. In this study, the VOC composition of 10 regular and 13 green cleaners was examined by headspace analysis. Monoterpenes were the most prevalent VOCs, with average total monoterpene concentrations of 8.6 and 25.0 mg L-1 for regular and green cleaners, respectively. Speciated monoterpene emissions were applied to a detailed chemical model to investigate the indoor air chemistry following a typical cleaning event. Green cleaners generally emitted more monoterpenes than regular cleaners, resulting in larger increases in harmful secondary pollutant concentrations following use, such as formaldehyde (up to 7%) and PAN species (up to 6%). However, emissions of the most reactive monoterpenes (α-terpinene, terpinolene and α-phellandrene), were observed more frequently from regular cleaners, resulting in a disproportionately large impact on the concentrations of radical species and secondary pollutants that were formed after cleaning occurred.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Volatile Organic Compounds , Air Pollutants/analysis , Air Pollution, Indoor/analysis , Formaldehyde/analysis , Volatile Organic Compounds/analysis , Monoterpenes
SELECTION OF CITATIONS
SEARCH DETAIL