ABSTRACT
Carajurin is the main constituent of Arrabidaea chica species with reported anti-Leishmania activity. However, its mechanism of action has not been described. This study investigated the mechanisms of action of carajurin against promastigote forms of Leishmania amazonensis. Carajurin was effective against promastigotes with IC50 of 7.96 ± 1.23 µg.mL-1 (26.4 µM), and the cytotoxic concentration for peritoneal macrophages was 258.2 ± 1.20 µg.mL-1 (856.9 µM) after 24 h of treatment. Ultrastructural evaluation highlighted pronounced swelling of the kinetoplast with loss of electron-density in L. amazonensis promastigotes induced by carajurin treatment. It was observed that carajurin leads to a decrease in the mitochondrial membrane potential (p = 0.0286), an increase in reactive oxygen species production (p = 0.0286), and cell death by late apoptosis (p = 0.0095) in parasites. Pretreatment with the antioxidant NAC prevented ROS production and significantly reduced carajurin-induced cell death. The electrochemical and density functional theory (DFT) data contributed to support the molecular mechanism of action of carajurin associated with the ROS generation, for which it is possible to observe a correlation between the LUMO energy and the electroactivity of carajurin in the presence of molecular oxygen. All these results suggest that carajurin targets the mitochondria in L. amazonensis. In addition, when assessed for its drug-likeness, carajurin follows Lipinski''s rule of five, and the Ghose, Veber, Egan, and Muegge criteria.
ABSTRACT
Chagas disease is a worldwide public health problem. Although the vectorial transmission of Chagas disease has been controlled in Brazil there are other ways of transmission, such as the ingestion of T. cruzi contaminated food, which ensures the continuation of this zoonosis. Here, we demonstrate the influence of the inoculation route on the establishment and development of the SC2005 T. cruzi strain infection in mice. Groups of Swiss mice were infected intragastrically (IG) or intraperitoneally (IP) with the T. cruzi SC2005 strain derived from an outbreak of oral Chagas disease. The results revealed that 100% of IP infected mice showed parasitemia, while just 36% of IG infected showed the presence of the parasite in blood. The parasitemia peaks were later and less intense in the IG infected mice. Mortality of the IP infected animals was more intense and earlier when compared to the IG infected mice. In the IP infected mice leucopenia occurred in the early infection followed by leucocytosis, correlating positively with the increase of the parasites. However, in the IG infected mice only an increase in monocytes was observed, which was positively correlated with the increase of the parasites. Histopathological analyses revealed a myotropic pattern of the SC2005 strain with the presence of inflammatory infiltrates and parasites in different organs of the animals infected by both routes as well as fibrosis foci and collagen redistribution. The flow cytometric analysis demonstrated a fluctuation of the T lymphocyte population in the blood, spleen and mesenteric lymph nodes of the infected animals. T. cruzi DNA associated with the presence of inflammatory infiltrates was detected by PCR in the esophagus, stomach and intestine of all infected mice. These findings are important for the understanding of the pathogenesis of T. cruzi infection by both inoculation routes.
Subject(s)
Chagas Disease/epidemiology , Chagas Disease/parasitology , Disease Outbreaks , Animals , Brazil/epidemiology , Chagas Disease/blood , Chagas Disease/transmission , Female , Humans , Leukocyte Count , Mice , Parasitemia/blood , Parasitemia/epidemiology , Parasitemia/parasitology , Parasitemia/transmission , Spleen/parasitology , Thymus Gland/parasitologyABSTRACT
Leishmania is inoculated, by the bite of an infected sandfly, into the skin of the host, where the promastigotes are phagocyted by dermal macrophages. The dermal region comprises cells and abundant extracellular matrix. Studies show that matrix metalloproteinases play an important role in host defense responses against pathogens in mammals and that their activities lead to the production of antimicrobial peptides. The aim of this study is to evaluate the changes in the distribution of fibronectin and laminin as well as in the elastic system fibres during the course of infection caused by Leishmania amazonensis in mice with distinct genetic backgrounds of susceptibility to this parasite. The results showed that BALB/c presented an enhancement of fibronectin during the course of infection when compared to their control group while the infected or non-infected C3H.He showed a decrease of this protein at end of the experiment. Laminin, on the other hand, remained unaltered in both strains. Also in both BALB/c and C3H.He mice the elastic and elaunin fibres remained unchanged while the oxytalan fibres decreased along the experiment. Ninety days after the infection C3H.He mice had recovered their capacity to produce oxytalan fibres.