Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38791439

ABSTRACT

Lefamulin is a first-in-class systemic pleuromutilin antimicrobial and potent inhibitor of bacterial translation, and the most recent novel antimicrobial approved for the treatment of community-acquired pneumonia (CAP). It exhibits potent antibacterial activity against the most prevalent bacterial pathogens that cause typical and atypical pneumonia and other infectious diseases. Early studies indicate additional anti-inflammatory activity. In this study, we further investigated the immune-modulatory activity of lefamulin in the influenza A/H1N1 acute respiratory distress syndrome (ARDS) model in BALB/c mice. Comparators included azithromycin, an anti-inflammatory antimicrobial, and the antiviral oseltamivir. Lefamulin significantly decreased the total immune cell infiltration, specifically the neutrophils, inflammatory monocytes, CD4+ and CD8+ T-cells, NK cells, and B-cells into the lung by Day 6 at both doses tested compared to the untreated vehicle control group (placebo), whereas azithromycin and oseltamivir did not significantly affect the total immune cell counts at the tested dosing regimens. Bronchioalveolar lavage fluid concentrations of pro-inflammatory cytokines and chemokines including TNF-α, IL-6, IL-12p70, IL-17A, IFN-γ, and GM-CSF were significantly reduced, and MCP-1 concentrations were lowered (not significantly) by lefamulin at the clinically relevant 'low' dose on Day 3 when the viral load peaked. Similar effects were also observed for oseltamivir and azithromycin. Lefamulin also decreased the viral load (TCID50) by half a log10 by Day 6 and showed positive effects on the gross lung pathology and survival. Oseltamivir and lefamulin were efficacious in the suppression of the development of influenza-induced bronchi-interstitial pneumonia, whereas azithromycin did not show reduced pathology at the tested treatment regimen. The observed anti-inflammatory and immune-modulatory activity of lefamulin at the tested treatment regimens highlights a promising secondary pharmacological property of lefamulin. While these results require confirmation in a clinical trial, they indicate that lefamulin may provide an immune-modulatory activity beyond its proven potent antibacterial activity. This additional activity may benefit CAP patients and potentially prevent acute lung injury (ALI) and ARDS.


Subject(s)
Disease Models, Animal , Diterpenes , Influenza A Virus, H1N1 Subtype , Mice, Inbred BALB C , Orthomyxoviridae Infections , Animals , Influenza A Virus, H1N1 Subtype/drug effects , Mice , Orthomyxoviridae Infections/drug therapy , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/virology , Diterpenes/pharmacology , Diterpenes/therapeutic use , Cytokines/metabolism , Azithromycin/pharmacology , Azithromycin/therapeutic use , Oseltamivir/pharmacology , Oseltamivir/therapeutic use , Female , Lung/immunology , Lung/virology , Lung/drug effects , Lung/pathology , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Tetrahydronaphthalenes/pharmacology , Tetrahydronaphthalenes/therapeutic use , Respiratory Distress Syndrome/drug therapy , Respiratory Distress Syndrome/immunology , Respiratory Distress Syndrome/virology , Immunomodulating Agents/pharmacology , Immunomodulating Agents/therapeutic use , Bronchoalveolar Lavage Fluid/immunology , Polycyclic Compounds , Thioglycolates
2.
J Appl Toxicol ; 42(8): 1371-1384, 2022 08.
Article in English | MEDLINE | ID: mdl-35152467

ABSTRACT

Toxicologic evaluation of new drug candidates routinely utilizes healthy animals. In oncology, there remains a limited understanding of the effects of novel test candidates in a diseased host. For vascular modulating agents (VMAs), an increased understanding of preclinical tumour-host interaction, and its potential to exacerbate or alleviate 'off-target' effects of anti-angiogenic administration, could aid in the prediction of adverse clinical outcomes in a defined cancer patient. We have previously reported that the implantation and growth of a range of human- and mouse-derived tumours leads to structural vascular and, potentially, functional signalling changes within host mouse endocrine tissues, indicating possible roles for tumour- and host-derived cytokines/growth factors and the liberation of myeloid-derived suppressor cells in this phenomenon. Here, we further demonstrate that the growth of the Calu-6 xenograft is associated with a resistance to VMA-induced mouse peripheral endocrine vascular rarefaction (toxicity), with potential functional impact, notably with respect to mixed tyrosine kinase inhibition. The pathogenesis of these findings indicates a potential role for both tumour- and host-derived basic fibroblast growth factor (bFGF), with associated upregulation in the intra-tumoural autotaxin-lysophosphatic acid signalling axis.


Subject(s)
Neoplasms , Neovascularization, Pathologic , Animals , Humans , Mice , Neoplasms/drug therapy , Neovascularization, Pathologic/drug therapy
3.
J Appl Toxicol ; 41(12): 1952-1965, 2021 12.
Article in English | MEDLINE | ID: mdl-33977518

ABSTRACT

Allograft and xenograft transplantation into a mouse host is frequently utilized to study cancer biology, tumor behavior, and response to treatment. Preclinical studies employing these models often focus solely upon the intra-tumoral effects of a given treatment, without consideration of systemic toxicity or tumor-host interaction, nor whether this latter relationship could modulate the toxicologic response to therapy. Here it is demonstrated that the implantation and growth of a range of human- and mouse-derived cell lines leads to structural vascular and, potentially, functional changes within peripheral endocrine tissues, a process that could conceivably ameliorate the severity of anti-angiogenic-induced fenestrated vessel attenuation. Observations suggest a multifactorial process, which may involve host- and tumor-derived cytokines/growth factors, and the liberation of myeloid-derived suppressor cells. Further investigation revealed a structurally comparable response to the administration of exogenous estrogen. These findings, in addition to providing insight into the development of clinical anti-angiogenic "adaptation," may be of significance within the "cancer-cachexia" and cancer-related anemia syndromes in man.


Subject(s)
Anemia/physiopathology , Cachexia/physiopathology , Cytokines/metabolism , Endocrine System/physiopathology , Animals , Cell Line, Tumor , Mice , Neoplasms/physiopathology
4.
Toxicol Sci ; 176(1): 224-235, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32298455

ABSTRACT

Integrating nonclinical in vitro, in silico, and in vivo datasets holistically can improve hazard characterization and risk assessment. In pharmaceutical development, cardiovascular liabilities are a leading cause of compound attrition. Prior to clinical studies, functional cardiovascular data are generated in single-dose safety pharmacology telemetry studies, with structural pathology data obtained from repeat-dose toxicology studies with limited concurrent functional endpoints, eg, electrocardiogram via jacketed telemetry. Relationships between datasets remain largely undetermined. To address this gap, a cross-pharma collaboration collated functional and structural data from 135 compounds. Retrospective functional data were collected from good laboratory practice conscious dog safety pharmacology studies: effects defined as hemodynamic blood pressure or heart rate changes. Morphologic pathology findings (mainly degeneration, vacuolation, inflammation) from related toxicology studies in the dog (3-91 days repeat-dosing) were reviewed, harmonized, and location categorized: cardiac muscle (myocardium, epicardium, endocardium, unspecified), atrioventricular/aortic valves, blood vessels. The prevalence of cardiovascular histopathology changes was 11.1% of compounds, with 53% recording a functional blood pressure or heart rate change. Correlations were assessed using the Mantel-Haenszel Chi-square trend test, identifying statistically significant associations between cardiac muscle pathology and (1) decreased blood pressure, (2) increased heart rate, and between cardiovascular vessel pathology and increased heart rate. Negative predictive values were high, suggesting few compounds cause repeat-dose cardiovascular structural change in the absence of functional effects in single-dose safety pharmacology studies. Therefore, observed functional changes could prompt moving (sub)chronic toxicology studies forward, to identify cardiovascular liabilities earlier in development, and reduce late-stage attrition.


Subject(s)
Cardiovascular System/drug effects , Dose-Response Relationship, Drug , Animals , Blood Pressure , Dogs , Drug Evaluation, Preclinical , Electrocardiography , Heart Rate , Hemodynamics , Male , Retrospective Studies , Telemetry
5.
Mol Biol Evol ; 37(8): 2197-2210, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32170949

ABSTRACT

Recombination increases the local GC-content in genomic regions through GC-biased gene conversion (gBGC). The recent discovery of a large genomic region with extreme GC-content in the fat sand rat Psammomys obesus provides a model to study the effects of gBGC on chromosome evolution. Here, we compare the GC-content and GC-to-AT substitution patterns across protein-coding genes of four gerbil species and two murine rodents (mouse and rat). We find that the known high-GC region is present in all the gerbils, and is characterized by high substitution rates for all mutational categories (AT-to-GC, GC-to-AT, and GC-conservative) both at synonymous and nonsynonymous sites. A higher AT-to-GC than GC-to-AT rate is consistent with the high GC-content. Additionally, we find more than 300 genes outside the known region with outlying values of AT-to-GC synonymous substitution rates in gerbils. Of these, over 30% are organized into at least 17 large clusters observable at the megabase-scale. The unusual GC-skewed substitution pattern suggests the evolution of genomic regions with very high recombination rates in the gerbil lineage, which can lead to a runaway increase in GC-content. Our results imply that rapid evolution of GC-content is possible in mammals, with gerbil species providing a powerful model to study the mechanisms of gBGC.


Subject(s)
Base Composition , Evolution, Molecular , Gene Conversion , Genome , Gerbillinae/genetics , Animals , Multigene Family , Mutation
6.
Proc Natl Acad Sci U S A ; 114(29): 7677-7682, 2017 07 18.
Article in English | MEDLINE | ID: mdl-28674003

ABSTRACT

The sand rat Psammomys obesus is a gerbil species native to deserts of North Africa and the Middle East, and is constrained in its ecology because high carbohydrate diets induce obesity and type II diabetes that, in extreme cases, can lead to pancreatic failure and death. We report the sequencing of the sand rat genome and discovery of an unusual, extensive, and mutationally biased GC-rich genomic domain. This highly divergent genomic region encompasses several functionally essential genes, and spans the ParaHox cluster which includes the insulin-regulating homeobox gene Pdx1. The sequence of sand rat Pdx1 has been grossly affected by GC-biased mutation, leading to the highest divergence observed for this gene across the Bilateria. In addition to genomic insights into restricted caloric intake in a desert species, the discovery of a localized chromosomal region subject to elevated mutation suggests that mutational heterogeneity within genomes could influence the course of evolution.


Subject(s)
Gerbillinae/genetics , Homeodomain Proteins/genetics , Mutation , Sequence Analysis, DNA , Trans-Activators/genetics , Transcriptional Activation , Adaptation, Biological , Animals , Chromosome Mapping , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Ecosystem , Evolution, Molecular , Genes, Homeobox , Genome , Insulin/metabolism , Male , Multigene Family , Transcriptome
7.
J Appl Toxicol ; 37(8): 902-912, 2017 08.
Article in English | MEDLINE | ID: mdl-28186326

ABSTRACT

The study of vascular modulation has received a great deal of attention in recent years as knowledge has increased around the role of angiogenesis within disease contexts such as cancer. Despite rapidly expanding insights into the molecular processes involved and the concomitant generation of a number of anticancer vascular modulating chemotherapeutics, techniques used in the measurement of structural vascular change have advanced more modestly, particularly with regard to the preclinical quantification of off-target vascular regression within systemic, notably endocrine, blood vessels. Such changes translate into a number of major clinical side effects and there remains a need for improved preclinical screening and analysis. Here we present the generation of a novel structural biomarker, which can be incorporated into a number of contemporary image analysis platforms and used to compare tumour versus systemic host tissue vascularity. By contrasting the measurements obtained, the preclinical efficacy of vascular modulating chemotherapies can be evaluated in light of the predicted therapeutic window. Copyright © 2017 John Wiley & Sons, Ltd.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Endocrine System/blood supply , Image Processing, Computer-Assisted , Lung Neoplasms/blood supply , Microvessels/drug effects , Neovascularization, Pathologic/pathology , Animals , Female , Lung Neoplasms/pathology , Mice, Inbred C57BL , Mice, Nude , Microvessels/pathology , Vascular Endothelial Growth Factor Receptor-1/antagonists & inhibitors , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Xenograft Model Antitumor Assays
8.
Environ Sci Technol ; 51(3): 1764-1774, 2017 02 07.
Article in English | MEDLINE | ID: mdl-28068076

ABSTRACT

Diclofenac is one of the most widely prescribed nonsteroidal anti-inflammatory drugs worldwide. It is frequently detected in surface waters; however, whether this pharmaceutical poses a risk to aquatic organisms is debated. Here we quantified the uptake of diclofenac by the fathead minnow (Pimephales promelas) following aqueous exposure (0.2-25.0 µg L-1) for 21 days, and evaluated the tissue and biomolecular responses in the kidney. Diclofenac accumulated in a concentration- and time-dependent manner in the plasma of exposed fish. The highest plasma concentration observed (for fish exposed to 25 µg L-1 diclofenac) was within the therapeutic range for humans. There was a strong positive correlation between exposure concentration and the number of developing nephrons observed in the posterior kidney. Diclofenac was not found to modulate the expression of genes in the kidney associated with its primary mode of action in mammals (prostaglandin-endoperoxide synthases) but modulated genes associated with kidney repair and regeneration. There were no significant adverse effects following 21 days exposure to concentrations typical of surface waters. The combination of diclofenac's uptake potential, effects on kidney nephrons and relatively small safety margin for some surface waters may warrant a longer term chronic health effects analysis for diclofenac in fish.


Subject(s)
Biological Availability , Diclofenac/metabolism , Animals , Cyprinidae/metabolism , Kidney/metabolism , Water Pollutants, Chemical/metabolism
9.
J Invest Dermatol ; 136(3): 665-671, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26876716

ABSTRACT

Atopic dermatitis (AD) is an inflammatory skin disease characterized by infiltration of skin homing lymphocytes into the dermis. Most of these lymphocytes express the chemokine receptor CCR4, and the frequency of blood CCR4(+) lymphocytes correlates with AD disease severity. Canine AD is a pruritic inflammatory condition that shows many features of the human disease, including CCR4 overexpression. Therefore, we tested a potent selective CCR4 antagonist in an allergen challenge model of canine AD, both clinically and histologically, to investigate whether this chemokine pathway plays a role in the inflammatory response. Using a four-period randomized cross-over study design, 14 beagles were challenged with allergen and clinically monitored. Biopsy samples were taken before and after allergen challenge. A clear reduction of clinical scores was observed with oral prednisolone (P < 0.0001) but not for the CCR4 inhibitor. A subset of the dogs (5/13) showed partial inhibition (30-49%) of the clinical signs with CCR4 inhibitor treatment, and this finding was supported by the results of histopathologic analysis of skin biopsy samples. This partial response is consistent with redundancy in chemokine pathways and highlights the need for therapies blocking multiple pathways. This study shows the utility of this canine model of AD for testing new therapeutic agents.


Subject(s)
Dermatitis, Atopic/drug therapy , Dermatitis, Atopic/pathology , Receptors, CCR4/administration & dosage , Receptors, CCR4/antagonists & inhibitors , Allergens/pharmacology , Animals , Area Under Curve , Biopsy, Needle , Cross-Over Studies , Disease Models, Animal , Dogs , Female , Humans , Immunohistochemistry , Male , Random Allocation , Reference Values , Treatment Outcome
10.
J Appl Toxicol ; 36(1): 140-50, 2016 Jan.
Article in English | MEDLINE | ID: mdl-25959454

ABSTRACT

Potential new drugs are assessed in pre-clinical in vivo studies to determine their safety profiles. The drugs are formulated in vehicles suitable for the route of administration and the physicochemical properties of the drug, aiming to achieve optimal exposure in the test species. The availability of safety data on vehicles is often limited (incomplete data, access restricted/private databases). Nineteen potentially useful vehicles that contained new and/or increased concentrations of excipients and for which little safety data have been published were tested. Vehicles were dosed orally once daily to HanWistar rats for a minimum of 28 days and a wide range of toxicological parameters were assessed. Only 30% (w/v) hydroxypropyl-ß-cyclodextrin was found unsuitable owing to effects on liver enzymes (AST, ALT and GLDH), urinary volume and the kidneys (tubular vacuolation and tubular pigment). 20% (v/v) oleic acid caused increased salivation and hence this vehicle should be used with caution. As 40% (v/v) tetraethylene glycol affected urinary parameters, its use should be carefully considered, particularly for compounds suspected to impact the renal system and studies longer than 1 month. There were no toxicologically significant findings with 10% (v/v) dimethyl sulphoxide, 20% (v/v) propylene glycol, 33% (v/v) Miglyol®812, 20% (w/v) Kolliphor®RH40, 10% (w/v) Poloxamer 407, 5% (w/v) polyvinylpyrrolidone K30 or 10% (v/v) Labrafil®M1944. All other vehicles tested caused isolated or low magnitude effects which would not prevent their use. The aim of sharing these data, including adverse findings, is to provide meaningful information for vehicle selection, thereby avoiding repetition of animal experimentation.


Subject(s)
Kidney/drug effects , Pharmaceutical Vehicles/toxicity , beta-Cyclodextrins/toxicity , 2-Hydroxypropyl-beta-cyclodextrin , Animals , Dimethyl Sulfoxide/toxicity , Ethylene Glycols/toxicity , Female , Kidney/pathology , Male , Organ Size/drug effects , Poloxamer/toxicity , Propylene Glycol/toxicity , Rats , Triglycerides/toxicity
11.
PeerJ ; 3: e1441, 2015.
Article in English | MEDLINE | ID: mdl-26623194

ABSTRACT

Portable DNA sequencers such as the Oxford Nanopore MinION device have the potential to be truly disruptive technologies, facilitating new approaches and analyses and, in some cases, taking sequencing out of the lab and into the field. However, the capabilities of these technologies are still being revealed. Here we show that single-molecule cDNA sequencing using the MinION accurately characterises venom toxin-encoding genes in the painted saw-scaled viper, Echis coloratus. We find the raw sequencing error rate to be around 12%, improved to 0-2% with hybrid error correction and 3% with de novo error correction. Our corrected data provides full coding sequences and 5' and 3' UTRs for 29 of 33 candidate venom toxins detected, far superior to Illumina data (13/40 complete) and Sanger-based ESTs (15/29). We suggest that, should the current pace of improvement continue, the MinION will become the default approach for cDNA sequencing in a variety of species.

12.
Toxicon ; 92: 140-56, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25449103

ABSTRACT

The identification of apparently conserved gene complements in the venom and salivary glands of a diverse set of reptiles led to the development of the Toxicofera hypothesis - the single, early evolution of the venom system in reptiles. However, this hypothesis is based largely on relatively small scale EST-based studies of only venom or salivary glands and toxic effects have been assigned to only some putative Toxicoferan toxins in some species. We set out to examine the distribution of these proposed venom toxin transcripts in order to investigate to what extent conservation of gene complements may reflect a bias in previous sampling efforts. Our quantitative transcriptomic analyses of venom and salivary glands and other body tissues in five species of reptile, together with the use of available RNA-Seq datasets for additional species, shows that the majority of genes used to support the establishment and expansion of the Toxicofera are in fact expressed in multiple body tissues and most likely represent general maintenance or "housekeeping" genes. The apparent conservation of gene complements across the Toxicofera therefore reflects an artefact of incomplete tissue sampling. We therefore conclude that venom has evolved multiple times in reptiles.


Subject(s)
Biological Evolution , Gene Expression Profiling/methods , Lizards/genetics , Lizards/metabolism , Transcriptome/genetics , Venoms/genetics , Animals , Base Sequence , Cysteine/analogs & derivatives , Cysteine/genetics , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/genetics , Hyaluronoglucosaminidase/genetics , Hyaluronoglucosaminidase/metabolism , Lectins/genetics , Lectins/metabolism , Likelihood Functions , Models, Genetic , Molecular Sequence Data , Phylogeny , Sequence Analysis, RNA , Ficolins
13.
BMC Genomics ; 15: 1074, 2014 Dec 06.
Article in English | MEDLINE | ID: mdl-25480530

ABSTRACT

BACKGROUND: Understanding the evolution of the vertebrate pancreas is key to understanding its functions. The chondrichthyes (cartilaginous fish such as sharks and rays) have often been suggested to possess the most ancient example of a distinct pancreas with both hormonal (endocrine) and digestive (exocrine) roles. The lack of genetic, genomic and transcriptomic data for cartilaginous fish has hindered a more thorough understanding of the molecular-level functions of the chondrichthyan pancreas, particularly with respect to their "unusual" energy metabolism (where ketone bodies and amino acids are the main oxidative fuel source) and their paradoxical ability to both maintain stable blood glucose levels and tolerate extensive periods of hypoglycemia. In order to shed light on some of these processes, we carried out the first large-scale comparative transcriptomic survey of multiple cartilaginous fish tissues: the pancreas, brain and liver of the lesser spotted catshark, Scyliorhinus canicula. RESULTS: We generated a mutli-tissue assembly comprising 86,006 contigs, of which 44,794 were assigned to a particular tissue or combination of tissues based on mapping of sequencing reads. We have characterised transcripts encoding genes involved in insulin regulation, glucose sensing, transcriptional regulation, signaling and digestion, as well as many peptide hormone precursors and their receptors for the first time. Comparisons to mammalian pancreas transcriptomes reveals that mechanisms of glucose sensing and insulin regulation used to establish and maintain a stable internal environment are conserved across jawed vertebrates and likely pre-date the vertebrate radiation. Conservation of pancreatic hormones and genes encoding digestive proteins support the single, early evolution of a distinct pancreatic gland with endocrine and exocrine functions in jawed vertebrates. In addition, we demonstrate that chondrichthyes lack pancreatic polypeptide (PP) and that reports of PP in the literature are likely due cross-reaction with PYY and/or NPY in the pancreas. A three hormone islet organ is therefore the ancestral jawed vertebrate condition, later elaborated upon only in the tetrapod lineage. CONCLUSIONS: The cartilaginous fish are a great untapped resource for the reconstruction of patterns and processes of vertebrate evolution and new approaches such as those described in this paper will greatly facilitate their incorporation into the rank of "model organism".


Subject(s)
Brain/metabolism , Dogfish/genetics , Dogfish/physiology , Gene Expression Profiling , Liver/metabolism , Pancreas/physiology , Amino Acid Sequence , Animals , Digestion/genetics , Evolution, Molecular , Genes, Homeobox/genetics , Glucose/metabolism , Insulin/chemistry , Insulin/genetics , Insulin/metabolism , Microsatellite Repeats/genetics , Molecular Sequence Data , Organ Specificity , Pancreas/cytology , Pancreas/metabolism , Receptors, Pancreatic Hormone/genetics , Signal Transduction/genetics , Transcription Factors/metabolism
14.
15.
Genome Biol Evol ; 6(8): 2088-95, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25079342

ABSTRACT

Snake venom has been hypothesized to have originated and diversified through a process that involves duplication of genes encoding body proteins with subsequent recruitment of the copy to the venom gland, where natural selection acts to develop or increase toxicity. However, gene duplication is known to be a rare event in vertebrate genomes, and the recruitment of duplicated genes to a novel expression domain (neofunctionalization) is an even rarer process that requires the evolution of novel combinations of transcription factor binding sites in upstream regulatory regions. Therefore, although this hypothesis concerning the evolution of snake venom is very unlikely and should be regarded with caution, it is nonetheless often assumed to be established fact, hindering research into the true origins of snake venom toxins. To critically evaluate this hypothesis, we have generated transcriptomic data for body tissues and salivary and venom glands from five species of venomous and nonvenomous reptiles. Our comparative transcriptomic analysis of these data reveals that snake venom does not evolve through the hypothesized process of duplication and recruitment of genes encoding body proteins. Indeed, our results show that many proposed venom toxins are in fact expressed in a wide variety of body tissues, including the salivary gland of nonvenomous reptiles and that these genes have therefore been restricted to the venom gland following duplication, not recruited. Thus, snake venom evolves through the duplication and subfunctionalization of genes encoding existing salivary proteins. These results highlight the danger of the elegant and intuitive "just-so story" in evolutionary biology.


Subject(s)
Evolution, Molecular , Gene Duplication , Reptiles/genetics , Snake Venoms/genetics , Animals , Genome , Phylogeny , Selection, Genetic , Snakes/genetics , Transcriptome
16.
Toxicol Sci ; 140(1): 3-15, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24675088

ABSTRACT

Many efficacious cancer treatments cause significant cardiac morbidity, yet biomarkers or functional indices of early damage, which would allow monitoring and intervention, are lacking. In this study, we have utilized a rat model of progressive doxorubicin (DOX)-induced cardiomyopathy, applying multiple approaches, including cardiac magnetic resonance imaging (MRI), to provide the most comprehensive characterization to date of the timecourse of serological, pathological, and functional events underlying this toxicity. Hannover Wistar rats were dosed with 1.25 mg/kg DOX weekly for 8 weeks followed by a 4 week off-dosing "recovery" period. Electron microscopy of the myocardium revealed subcellular degeneration and marked mitochondrial changes after a single dose. Histopathological analysis revealed progressive cardiomyocyte degeneration, hypertrophy/cytomegaly, and extensive vacuolation after two doses. Extensive replacement fibrosis (quantified by Sirius red staining) developed during the off-dosing period. Functional indices assessed by cardiac MRI (including left ventricular ejection fraction (LVEF), cardiac output, and E/A ratio) declined progressively, reaching statistical significance after two doses and culminating in "clinical" LV dysfunction by 12 weeks. Significant increases in peak myocardial contrast enhancement and serological cardiac troponin I (cTnI) emerged after eight doses, importantly preceding the LVEF decline to <50%. Troponin I levels positively correlated with delayed and peak gadolinium contrast enhancement, histopathological grading, and diastolic dysfunction. In summary, subcellular cardiomyocyte degeneration was the earliest marker, followed by progressive functional decline and histopathological manifestations. Myocardial contrast enhancement and elevations in cTnI occurred later. However, all indices predated "clinical" LV dysfunction and thus warrant further evaluation as predictive biomarkers.


Subject(s)
Antibiotics, Antineoplastic/toxicity , Cardiomyopathies/pathology , Doxorubicin/toxicity , Myocardium/ultrastructure , Troponin I/blood , Animals , Biomarkers/blood , Cardiomyopathies/blood , Cardiomyopathies/chemically induced , Cardiotoxicity , Disease Models, Animal , Fibrosis , Heart Function Tests , Magnetic Resonance Imaging , Male , Rats, Wistar
17.
Toxicol Pathol ; 40(6): 926-30, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22585942

ABSTRACT

Wistar rats are frequently selected for use in carcinogenicity studies because of their advantageous survival rate, which is more favorable than other strains such as the Sprague-Dawley (SD) strain. Uterine and mammary tumors are relatively common spontaneous neoplasms of both strains. We examined the incidence and coincidence of uterine tumors and mammary tumors in control animals of both strains within the RITA database. There was a strong inverse relationship between these tumor types in Wistar rats (p < .001). A less strong relationship was present in SD rats (p = .057). This association is likely to be related to prolactin. A short review of the role of prolactin in rats is given. These results are also discussed in the background of nonspecific toxicity at high dose levels in carcinogenicity studies above MTD levels resulting in reduction in body weights of >10%.


Subject(s)
Mammary Neoplasms, Animal/epidemiology , Prolactin/metabolism , Rats, Sprague-Dawley , Rats, Wistar , Uterine Cervical Neoplasms/epidemiology , Uterine Cervical Neoplasms/veterinary , Animals , Female , Incidence , Mammary Neoplasms, Animal/metabolism , Rats , Uterine Cervical Neoplasms/metabolism
18.
Stand Genomic Sci ; 7(1): 150-2, 2012 Oct 10.
Article in English | MEDLINE | ID: mdl-23451292

ABSTRACT

This report summarizes the proceedings of the 1st Snake Genomics and Integrative Biology Meeting held in Vail, CO USA, 5-8 October 2011. The meeting had over twenty registered participants, and was conducted as a single session of presentations. Goals of the meeting included coordination of genomic data collection and fostering collaborative interactions among researchers using snakes as model systems.

19.
J Appl Toxicol ; 31(7): 599-607, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21887789

ABSTRACT

Drug-induced changes in prolactin signaling may obscure interpretation of preclinical toxicological endpoints. However, with informed consideration, classic hallmarks of hypo-/hyperprolactinemia can be recognized in short- and long-term rodent bioassays. Findings can be supported and expanded with additional in vivo and in vitro datasets. When taken together with human epidemiological evidence pertaining to the consequences of drug-induced hypo-/hyperprolactinemia, such findings permit both an analysis of human relevance and an assessment of human risk.


Subject(s)
Hyperprolactinemia/chemically induced , Prolactin/blood , Animals , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Humans , Hyperprolactinemia/pathology , Risk Assessment
20.
PLoS Negl Trop Dis ; 3(12): e569, 2009 Dec 22.
Article in English | MEDLINE | ID: mdl-20027216

ABSTRACT

BACKGROUND: Most epidemiological and clinical reports on snake envenoming focus on a single country and describe rural communities as being at greatest risk. Reports linking snakebite vulnerability to socioeconomic status are usually limited to anecdotal statements. The few reports with a global perspective have identified the tropical regions of Asia and Africa as suffering the highest levels of snakebite-induced mortality. Our analysis examined the association between globally available data on snakebite-induced mortality and socioeconomic indicators of poverty. METHODOLOGY/PRINCIPAL FINDINGS: We acquired data on (i) the Human Development Index, (ii) the Per Capita Government Expenditure on Health, (iii) the Percentage Labour Force in Agriculture and (iv) Gross Domestic Product Per Capita from publicly available databases on the 138 countries for which snakebite-induced mortality rates have recently been estimated. The socioeconomic datasets were then plotted against the snakebite-induced mortality estimates (where both datasets were available) and the relationship determined. Each analysis illustrated a strong association between snakebite-induced mortality and poverty. CONCLUSIONS/SIGNIFICANCE: This study, the first of its kind, unequivocally demonstrates that snake envenoming is a disease of the poor. The negative association between snakebite deaths and government expenditure on health confirms that the burden of mortality is highest in those countries least able to deal with the considerable financial cost of snakebite.


Subject(s)
Poverty , Snake Bites/economics , Humans , Rural Health , Snake Bites/mortality
SELECTION OF CITATIONS
SEARCH DETAIL
...