Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Food Bioproc Tech ; 14(12): 2323-2335, 2021.
Article in English | MEDLINE | ID: mdl-34751231

ABSTRACT

Abstract: Extending the shelf-life and ensuring microbiological safety of food products while preserving the nutritional properties are key aspects that must be addressed. Heat processing of food matrices has been the golden standard during the last decades, while certain non-thermal processing options have recently gained ground. In the present study, experimental pulsed light (PL) surface inactivation treatments of Salmonella enteritidis on almonds kernels are performed. The PL system is set to test different operative conditions, namely power (1000, 1250, and 1500 W) and frequency (1.8, 3.0, and 100.0 Hz) at different treatment times (from 5 to 250 s), which result in applied fluence doses in the 0-100 J·cm-2 range. Additionally, temperature measurements are collected at each operative condition on the almond surface (using infrared (IR) thermography) and at the superficial layer of the almond (1-mm depth using a thermocouple). The observed PL inactivation kinetics are then modelled using four different models. The best goodness-of-fit is found for the two-parameter Weibull model (R 2 > 0.98 and RMSE < 0.33 for all cases). The maximum achieved log-CFU reductions are 6.02 for the 1.8-Hz system, 4.69 for the 3.0-Hz system, and 3.66 for 100.0-Hz system. The offset between the collected temperature readings by the two sensors is contrasted against the inactivation rate (following the two-parameter Weibull model). It was found that the highest inactivation rate corresponds approximately to the point where the infrared camera detects a slowdown in the surface heating. Supplementary Information: The online version contains supplementary material available at 10.1007/s11947-021-02725-9.

2.
Pharmaceutics ; 13(10)2021 Oct 12.
Article in English | MEDLINE | ID: mdl-34683957

ABSTRACT

The freezing phenomenon has a dramatic impact on the quality of freeze-dried products. Several freezing models applied to solutions in vials have been proposed to predict the resulting product morphology and describe heat transfer mechanisms. However, there is a lack of detailed experimental observations of the freezing phenomenon in vials in the literature. Thus, the present work offers new experimental observations of the freezing phenomenon in vials by infrared (IR) thermography. IR imaging allowed each vial's whole axial temperature profile to be collected during freezing, providing significant insights into the process. Spontaneous nucleation and vacuum-induced surface freezing (VISF), as a controlled nucleation technique, are investigated. Batches having vials in direct contact with the shelf (exchanging heat mainly through conduction) as well as suspended (exchanging heat mainly through natural convection and radiation) were tested. The study used three solutions: sucrose 5%, mannitol 5%, and dextran 10%. SEM images coupled with an automated image segmentation technique were also performed to examine possible correlations between the freezing observations and the resulting pore size distributions. IR thermography was found to be a promising tool for experimentally predicting the resulting product morphology in-line.

3.
Pharm Res ; 38(4): 707-719, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33686561

ABSTRACT

PURPOSE: Present (i) an infrared (IR)-based Process Analytical Technology (PAT) installed in a lab-scale freeze-dryer and (ii) a micro freeze-dryer (MicroFD®) as effective tools for freeze-drying design space calculation of the primary drying stage. METHODS: The case studies investigated are the freeze-drying of a crystalline (5% mannitol) and of an amorphous (5% sucrose) solution processed in 6R vials. The heat (Kv) and the mass (Rp) transfer coefficients were estimated: tests at 8, 13 and 26 Pa were carried out to assess the chamber pressure effect on Kv. The design space of the primary drying stage was calculated using these parameters and a well-established model-based approach. The results obtained using the proposed tools were compared to the ones in case Kv and Rp were estimated in a lab-scale unit through gravimetric tests and a thermocouple-based method, respectively. RESULTS: The IR-based method allows a non-gravimetric estimation of the Kv values while with the micro freeze-dryer gravimetric tests require a very small number of vials. In both cases, the obtained values of Kv and Rp, as well as the resulting design spaces, were all in very good agreement with those obtained in a lab-scale unit through the gravimetric tests (Kv) and the thermocouple-based method (Rp). CONCLUSIONS: The proposed tools can be effectively used for design space calculation in substitution of other well-spread methods. Their advantages are mainly the less laborious Kv estimation process and, as far as the MicroFD® is concerned, the possibility of saving time and formulation material when evaluating Rp.


Subject(s)
Computer-Aided Design/instrumentation , Drug Compounding/methods , Freeze Drying/methods , Models, Chemical , Chemistry, Pharmaceutical , Drug Compounding/instrumentation , Freeze Drying/instrumentation , Mannitol/chemistry , Spectrophotometry, Infrared/instrumentation , Spectrophotometry, Infrared/methods , Sucrose/chemistry
4.
Eur J Pharm Biopharm ; 158: 113-122, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33171203

ABSTRACT

Temperature monitoring and accurate drying end time determination are crucial for final product quality in vacuum freeze-drying of pharmaceuticals. Whether crystalline or amorphous solutes are used in the formulation, product temperature during ice sublimation should be kept below a threshold limit to avoid damage to the product structure. Hence, there is a need to continuously monitor product temperature throughout this process. Current monitoring tools, such as thermocouples and Pirani gauge pressure sensors, have several limitations such as affecting product dynamics or imprecise end point determination. In this work, a monitoring tool based on infrared (IR) thermography is used for batch freeze-drying processes. Batches using three different vial sizes, with up to 157 vials, were studied, allowing to extend and better describe the representativeness of IR thermography for this application. The detailed axial temperature profiles obtained through IR imaging allowed not only a comprehensive non-invasive temperature monitoring of the product, but also tracking of the sublimation interface. IR temperature measurements and primary drying end point determination were compared to standard methods and thus verified. Parameters important for freeze drying design space calculation, namely the global heat coefficient (Kv) and cake resistance to vapor flow (Rp), were also accurately estimated with the proposed method.


Subject(s)
Drug Compounding/standards , Freeze Drying/standards , Quality Control , Thermometry/instrumentation , Drug Compounding/methods , Infrared Rays , Solutions/chemistry , Temperature , Thermometry/methods
5.
J Pharm Sci ; 109(1): 797-806, 2020 01.
Article in English | MEDLINE | ID: mdl-31678249

ABSTRACT

This article aims to investigate how a small-scale freeze-dryer can be used for process design. The system encompasses a temperature controlled metallic ring that surrounds a small batch of vials, in contact with the external vials through removable thermal conductors. The temperature of the ring can be modified to keep a constant difference with the temperature of one or more vials of the batch. In this article, an extensive validation of the system is given, considering 10% w/w sucrose and 5% w/w mannitol solutions, processed in different types of vials (6 R and 20 R) and in different operating conditions. The micro freeze-dryer was also shown to be able to provide accurate estimates of the overall heat transfer coefficient from the shelf to the product in the vials (Kv) and of the resistance of the dried cake to vapor flux (Rp): both values appeared to be very close to those obtained for the same case studies in a pilot-scale unit. Finally, the use of the micro freeze-dryer to control product temperature and drying time values to simulate a pilot-scale unit was addressed, thus demonstrating the adequacy of this system for process scaleup.


Subject(s)
Mannitol/chemistry , Models, Chemical , Sucrose/chemistry , Technology, Pharmaceutical/instrumentation , Drug Compounding , Energy Transfer , Equipment Design , Freeze Drying , Miniaturization , Pressure , Temperature , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...