Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 253(Pt 5): 127142, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37797853

ABSTRACT

In the present study, polymeric nanoparticles loaded with IRI and quercetin, a p-gp inhibitor, were developed to target folate receptors expressed by colon cancer cells for oral targeted delivery. This work reports the development of PNPs with an entrapment efficiency of 41.26 ± 0.56 % for IRI and 55.83 ± 4.51 for QT. PNPs were further surface modified using chitosan-folic acid conjugates for better targetability to obtain folic acid-chitosan coated nanoparticles. DLS and FeSEM revealed particles in the nanometric size range with spherical morphology, while FTIR and DSC provided details on their structure and encapsulation. In vitro drug release studies confirmed a sustained release pattern of IRI and QT, while cell line studies confirmed the superiority of C-FA-PNPs when tested on Caco2 cells. Pharmacodynamic studies in colon cancer induced rats showed similar efficacy for PNPs and C-FA-PNPs. Further examination from a bio-distribution study in healthy rats, revealed the failure of C-FA-PNPs to deliver the drugs to the colon adequately, while the PNPs improved the available concentration of IRI at the colon by almost 1.8 folds when compared to the available marketed product. Hence, the developed PNP formulation sticks out as a plausible substitute for the intravenous dosage forms of IRI which have been conventionally prevailing.


Subject(s)
Chitosan , Colonic Neoplasms , Nanoparticles , Humans , Rats , Animals , Drug Carriers/chemistry , Chitosan/chemistry , Folic Acid/chemistry , Caco-2 Cells , Polymers/chemistry , Nanoparticles/chemistry , Colonic Neoplasms/drug therapy
2.
Biomater Adv ; 140: 213085, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36037762

ABSTRACT

Localized drug delivery to the breast tissues is an area of interest as a potential route to ensure site-specific drug delivery. Transpapillary delivery via the mammary papilla has advantages as most breast tumors arise from the milk ducts. The present study explored the plausibility of transpapillary delivery of a phytochemical, resveratrol (RVT), for breast cancer treatment. RVT was encapsulated within the transfersomes (RVT-TRF) to enable a sustained release of the drug using the biomaterial soya phosphatidylcholine (SPC). Iontophoresis was applied to further accelerate the penetration of the RVT-TRF across the mammary papilla to the breast tissue. The RVT-TRF development was optimized by the Design of Experiments (DoE) approach. The in vitro transpapillary iontophoresis study on porcine mammary papilla showed an enhanced penetration of RVT-TRF when compared to passive diffusion. The transpapillary delivery was further confirmed from the in vitro fluorescent microscopy study using FITC conjugated RVT-TRF. The optimized RVT-TRF delivered via transpapillary route showed a higher Cmax and AUC when compared to pure RVT given orally. A significant reduction in the tumor volume and the serum biomarker CA 15-3, when evaluated in a chemically induced breast cancer rat model, provided evidence of the effectiveness of the developed formulation when delivered locally via transpapillary route compared to the oral route. Thus the developed RVT-TRF administered via transpapillary iontophoresis technique is a promising strategy enabling a localized delivery for effective breast cancer therapy.


Subject(s)
Breast Neoplasms , Iontophoresis , Administration, Oral , Animals , Breast Neoplasms/drug therapy , Drug Delivery Systems/methods , Female , Humans , Rats , Resveratrol/pharmacology , Swine
3.
Eur J Pharmacol ; 929: 175147, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35820531

ABSTRACT

Psoriasis is considered an autoimmune, inflammatory disorder with a genetic basis. The underlying aetiology is yet unclear. Evidence suggests the congregation of immune cells and their secreted inflammatory cytokines, leukocytes, and other inflammation-promoting factors in large amounts within the epidermal layers of the skin, driving an inflammatory milieu. Although psoriasis is not a fatal condition, patients experience severe pain and suffering. It has a debilitating effect on the physiological and psychological state of the patient. Its distinguishing features are inflammation, formation of plaques on the skin and hyperproliferation of keratinocytes. Therapeutic strategies for treating psoriasis witnessed a radical improvement from traditional therapies to the approval of specific therapies like biologics and small molecules. The emerging evidence about new pharmacological targets and mechanisms in psoriasis has widened the scope for expanding therapeutic strategies. Our review discusses the existing treatments for plaque psoriasis and updates on therapies based on novel pharmacological targets in clinical development.


Subject(s)
Autoimmune Diseases , Psoriasis , Biological Factors , Cytokines , Humans , Inflammation , Keratinocytes , Psoriasis/drug therapy
4.
Chem Biodivers ; 19(5): e202100956, 2022 May.
Article in English | MEDLINE | ID: mdl-35304823

ABSTRACT

In drug discovery, the hybridization of bioactive pharmacophores is a powerful tool for targeting enzymes involved in cancer and microbial cell growth. A combination of 1,3,4-oxadiazole and isobenzofuran may improve the antitumor and antimicrobial properties of the hybrid molecules. A series of hybrid molecules having 1,3,4-oxadiazole and isobenzofuran were synthesized and structural characterization was done by FT-IR, 1 H-NMR, 13 C-NMR, and mass spectrometry. Molecular docking studies were performed to investigate binding interactions of compounds with proteins (PDB NO: 2R3J and 1GII), and the results were consistent with in vitro anticancer data. All the synthesized compounds were tested for antimicrobial activity against S. aureus, E. faecalis (Gram-positive) and E. coli and P. aeruginosa (Gram-negative) bacterial strains. Among the synthesized compounds, 7a and 7b displayed good activity against the tested bacterial strains. Also, compounds were tested for their anti-tumor activity against breast cancer (MCF-7) and colon cancer (HCT-116) cell lines via SRB assay. In comparison to doxorubicin (1.14 µM), hybrids 7e (4.32 µM), 7f (4.15 µM), 7g (4.66 µM), and 7h (4.83 µM) demonstrated comparable IC50 value against the HCT 116 cell line.


Subject(s)
Anti-Infective Agents , Antineoplastic Agents , Anti-Bacterial Agents/chemistry , Anti-Infective Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Proliferation , Drug Screening Assays, Antitumor , Escherichia coli , Humans , Molecular Docking Simulation , Molecular Structure , Oxadiazoles , Spectroscopy, Fourier Transform Infrared , Staphylococcus aureus , Structure-Activity Relationship
5.
Mol Divers ; 26(5): 2793-2811, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35146638

ABSTRACT

Wnt signaling pathway is an evolutionarily conserved pathway responsible for neurogenesis, axon outgrowth, neuronal polarity, synapse formation, and maintenance. Downregulation of Wnt signaling has been found in patients with Alzheimer's disease (AD). Several experimental approaches to activate Wnt signaling pathway have proven to be beneficial in alleviating AD, which is one of the new therapeutic approaches for AD. The current study focuses on the computational structure-based virtual screening followed by the identification of potential phytomolecules targeting different markers of Wnt signaling like WIF1, DKK1, LRP6, GSK-3ß, and acetylcholine esterase. Initially, screening of 1924 compounds from the plant-based library of Zinc database was done for the selected five proteins using docking approach followed by MM-GBSA calculations. The top five hit molecules were identified for each protein. Based on docking score, and binding interactions, the top two hit molecules for each protein were selected as promising molecules for the molecular dynamic (MD) simulation study with the five proteins. Therefore, from this in silico based study, we report that Mangiferin could be a potential molecule targeting Wnt signaling pathway modulating the LRP6 activity, Baicalin for AChE activity, Chebulic acid for DKK1, ZINC103539689 for WIF1, and Morin for GSk-3ß protein. However, further validation of the activity is warranted based on in vivo and in vitro experiments for better understanding and strong claim. This study provides an in silico approach for the identification of modulators of the Wnt signaling pathway as a new therapeutic approach for AD.


Subject(s)
Alzheimer Disease , Molecular Dynamics Simulation , Acetylcholine/therapeutic use , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Esterases/metabolism , Esterases/therapeutic use , Glycogen Synthase Kinase 3 beta/metabolism , Humans , Molecular Docking Simulation , Wnt Signaling Pathway , Zinc
6.
3 Biotech ; 11(12): 506, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34840927

ABSTRACT

The human Abl kinases comprise a family of proteins that are known to be key stimulus drivers in the signaling pathways modulating cell growth, cell survival, cell adhesion, and apoptosis. Recent collative studies have indicated the role of activation of Abl and Abl-related genes in solid tumors; further terming the Abl kinases as molecular switches which promote proliferation, tumorigenesis, and metastasis. The up-regulated Abl-kinase expression in colorectal cancer (CRC) and the role of Abl tyrosine kinase activity in the Matrigel invasion of CRC cells have cemented its significance in CRC advancement. Therefore, the requisite of identifying small molecules which serve as Abl selective inhibitors and designing anti-Abl therapies, particularly for CRC tumors, has driven this study. Curcumin has been touted as an effective inhibitor of cancer cells; however, it is limited by its physicochemical inadequacies. Hence, we have studied the behavior of heterocyclic derivatives of curcumin via computational tools such as pharmacophore-based virtual screening, molecular docking, free-energy binding, and ADME profiling. The most actively docked molecule, 3,5-bis(4-hydroxy-3-methylstyryl)-1H-pyrazole-1-carboxamide, was comparatively evaluated against Curcumin via molecular dynamics simulation using Desmond, Schrödinger. The study exhibited the improved stability of the derivative as compared to Curcumin in the tested protein pocket and displayed the interaction bonds with the contacted key amino acids. To further establish the claim, the derivatives were synthesized via the mechanism of cyclization of Curcumin and screened in vitro using SRB assay against human CRC cell line, HCT 116. The active derivative indicated an IC50 value of 5.85 µM, which was sevenfold lower as compared to Curcumin's IC50 of 35.40 µM. Hence, the results base the potential role of the curcumin derivative in modulating Abl-kinase activity and in turn may have potential therapeutic value as a lead for CRC therapy. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-021-03051-9.

SELECTION OF CITATIONS
SEARCH DETAIL
...