Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biosens Bioelectron ; 258: 116368, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38744114

ABSTRACT

Biosensing with biological field-effect transistors (bioFETs) is a promising technology toward specific, label-free, and multiplexed sensing in ultra-small samples. The current study employs the field-effect meta-nano-channel biosensor (MNC biosensor) for the detection of the enzyme N-acetyl-beta-D-glucosaminidase (NAGase), a biomarker for milk cow infections. The measurements are performed in a 0.5 µL drops of 3% commercial milk spiked with NAGase concentrations in the range of 30.3 aM-3.03 µM (Note that there is no background NAGase concentration in commercial milk). Specific and label-free sensing of NAGase is demonstrated with a limit-of-detection of 30.3 aM, a dynamic range of 11 orders of magnitude and with excellent linearity and sensitivity. Additional two important research outcomes are reported. First, the ionic strength of the examined milk is ∼120 mM which implies a bulk Debye screening length <1 nm. Conventionally, a 1 nm Debye length excludes the possibility of sensing with a recognition layer composed of surface bound anti-NAGase antibodies with a size of ∼10 nm. This apparent contradiction is removed considering the ample literature reporting antibody adsorption in a predominantly surface tilted configuration (side-on, flat-on, etc.). Secondly, milk contains a non-specific background protein concentration of 33 mg/ml, in addition to considerable amounts of micron-size heterogeneous fat structures. The reported sensing was performed without the customarily exercised surface blocking and without washing of the non-specific signal. This suggests that the role of non-specific adsorption to the BioFET sensing signal needs to be further evaluated. Control measurements are reported.


Subject(s)
Acetylglucosaminidase , Biosensing Techniques , Limit of Detection , Milk , Biosensing Techniques/methods , Milk/chemistry , Animals , Cattle , Acetylglucosaminidase/analysis , Osmolar Concentration , Transistors, Electronic , Equipment Design
2.
Nanoscale ; 16(13): 6648-6661, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38483160

ABSTRACT

Antibody-antigen interactions are shaped by the solution pH level, ionic strength, and electric fields, if present. In biological field-effect transistors (BioFETs), the interactions take place at the sensing area in which the pH level, ionic strength and electric fields are determined by the Poisson-Boltzmann equation and the boundary conditions at the solid-solution interface and the potential applied at the solution electrode. The present study demonstrates how a BioFET solution electrode potential affects the sensing area double layer pH level, ionic strength, and electric fields and in this way shapes the biological interactions at the sensing area. We refer to this as 'active sensing'. To this end, we employed the meta-nano-channel (MNC) BioFET and demonstrate how the solution electrode can determine the antibody-antigen equilibrium constant and allows the control and tuning of the sensing performance in terms of the dynamic range and limit-of-detection. In the current work, we employed this method to demonstrate the specific and label-free sensing of Alpha-Fetoprotein (AFP) molecules from 0.5 µL drops of 1 : 100 diluted serum. AFP was measured during pregnancy as part of the prenatal screening program for fetal anomalies, chromosomal abnormalities, and abnormal placentation. We demonstrate AFP sensing with a limit-of-detection of 10.5 aM and a dynamic range of 6 orders of magnitude in concentration. Extensive control measurements are reported.


Subject(s)
Biosensing Techniques , alpha-Fetoproteins , Biosensing Techniques/methods , Electrodes
SELECTION OF CITATIONS
SEARCH DETAIL
...