Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Nature ; 589(7841): 310-314, 2021 01.
Article in English | MEDLINE | ID: mdl-33268896

ABSTRACT

Photosynthetic reaction centres harvest the energy content of sunlight by transporting electrons across an energy-transducing biological membrane. Here we use time-resolved serial femtosecond crystallography1 using an X-ray free-electron laser2 to observe light-induced structural changes in the photosynthetic reaction centre of Blastochloris viridis on a timescale of picoseconds. Structural perturbations first occur at the special pair of chlorophyll molecules of the photosynthetic reaction centre that are photo-oxidized by light. Electron transfer to the menaquinone acceptor on the opposite side of the membrane induces a movement of this cofactor together with lower amplitude protein rearrangements. These observations reveal how proteins use conformational dynamics to stabilize the charge-separation steps of electron-transfer reactions.


Subject(s)
Photosynthetic Reaction Center Complex Proteins/chemistry , Photosynthetic Reaction Center Complex Proteins/metabolism , Bacteriochlorophylls/metabolism , Binding Sites/drug effects , Chlorophyll/metabolism , Chlorophyll/radiation effects , Crystallography , Cytoplasm/metabolism , Electron Transport/drug effects , Electrons , Hyphomicrobiaceae/enzymology , Hyphomicrobiaceae/metabolism , Lasers , Models, Molecular , Oxidation-Reduction/radiation effects , Pheophytins/metabolism , Photosynthetic Reaction Center Complex Proteins/radiation effects , Protons , Ubiquinone/analogs & derivatives , Ubiquinone/metabolism , Vitamin K 2/metabolism
3.
Nat Commun ; 10(1): 2589, 2019 06 13.
Article in English | MEDLINE | ID: mdl-31197138

ABSTRACT

X-ray free electron lasers (XFELs) create new possibilities for structural studies of biological objects that extend beyond what is possible with synchrotron radiation. Serial femtosecond crystallography has allowed high-resolution structures to be determined from micro-meter sized crystals, whereas single particle coherent X-ray imaging requires development to extend the resolution beyond a few tens of nanometers. Here we describe an intermediate approach: the XFEL imaging of biological assemblies with helical symmetry. We collected X-ray scattering images from samples of microtubules injected across an XFEL beam using a liquid microjet, sorted these images into class averages, merged these data into a diffraction pattern extending to 2 nm resolution, and reconstructed these data into a projection image of the microtubule. Details such as the 4 nm tubulin monomer became visible in this reconstruction. These results illustrate the potential of single-molecule X-ray imaging of biological assembles with helical symmetry at room temperature.


Subject(s)
Electrons , Lasers , Microtubules/ultrastructure , Molecular Imaging/methods , Tubulin/ultrastructure , Algorithms , Crystallography, X-Ray/instrumentation , Crystallography, X-Ray/methods , Image Processing, Computer-Assisted , Molecular Imaging/instrumentation , Scattering, Radiation , Synchrotrons , X-Rays
4.
J Appl Crystallogr ; 52(Pt 2): 378-386, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-30996717

ABSTRACT

The X-ray crystallography station I911-2 at MAXLab II (Lund, Sweden) has been adapted to enable difference small- and wide-angle X-ray scattering (SAXS/WAXS) data to be recorded. Modifications to the beamline included a customized flow cell, a motorized flow cell holder, a helium cone, a beam stop, a sample stage and a sample delivery system. This setup incorporated external devices such as infrared lasers, LEDs and reaction mixers to induce conformational changes in macromolecules. This platform was evaluated through proof-of-principle experiments capturing light-induced conformational changes in phytochromes. A difference WAXS signature of conformational changes in a plant aqua-porin was also demonstrated using caged calcium.

5.
Structure ; 25(9): 1461-1468.e2, 2017 09 05.
Article in English | MEDLINE | ID: mdl-28781082

ABSTRACT

Serial protein crystallography was developed at X-ray free-electron lasers (XFELs) and is now also being applied at storage ring facilities. Robust strategies for the growth and optimization of microcrystals are needed to advance the field. Here we illustrate a generic strategy for recovering high-density homogeneous samples of microcrystals starting from conditions known to yield large (macro) crystals of the photosynthetic reaction center of Blastochloris viridis (RCvir). We first crushed these crystals prior to multiple rounds of microseeding. Each cycle of microseeding facilitated improvements in the RCvir serial femtosecond crystallography (SFX) structure from 3.3-Å to 2.4-Å resolution. This approach may allow known crystallization conditions for other proteins to be adapted to exploit novel scientific opportunities created by serial crystallography.


Subject(s)
Hyphomicrobiaceae/metabolism , Membrane Proteins/chemistry , Bacterial Proteins/chemistry , Crystallography, X-Ray , Hyphomicrobiaceae/chemistry , Models, Molecular , Photosynthesis , Protein Conformation
6.
Cytoskeleton (Hoboken) ; 74(12): 472-481, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28574190

ABSTRACT

A major goal for X-ray free-electron laser (XFEL) based science is to elucidate structures of biological molecules without the need for crystals. Filament systems may provide some of the first single macromolecular structures elucidated by XFEL radiation, since they contain one-dimensional translational symmetry and thereby occupy the diffraction intensity region between the extremes of crystals and single molecules. Here, we demonstrate flow alignment of as few as 100 filaments (Escherichia coli pili, F-actin, and amyloid fibrils), which when intersected by femtosecond X-ray pulses result in diffraction patterns similar to those obtained from classical fiber diffraction studies. We also determine that F-actin can be flow-aligned to a disorientation of approximately 5 degrees. Using this XFEL-based technique, we determine that gelsolin amyloids are comprised of stacked ß-strands running perpendicular to the filament axis, and that a range of order from fibrillar to crystalline is discernable for individual α-synuclein amyloids.


Subject(s)
Actins/chemistry , Amyloid/chemistry , Escherichia coli/chemistry , Fimbriae, Bacterial/chemistry , Lasers , X-Rays , Amyloid/ultrastructure , Fimbriae, Bacterial/ultrastructure
7.
Nat Commun ; 7: 12314, 2016 08 22.
Article in English | MEDLINE | ID: mdl-27545823

ABSTRACT

Serial femtosecond crystallography (SFX) using X-ray free-electron laser sources is an emerging method with considerable potential for time-resolved pump-probe experiments. Here we present a lipidic cubic phase SFX structure of the light-driven proton pump bacteriorhodopsin (bR) to 2.3 Å resolution and a method to investigate protein dynamics with modest sample requirement. Time-resolved SFX (TR-SFX) with a pump-probe delay of 1 ms yields difference Fourier maps compatible with the dark to M state transition of bR. Importantly, the method is very sample efficient and reduces sample consumption to about 1 mg per collected time point. Accumulation of M intermediate within the crystal lattice is confirmed by time-resolved visible absorption spectroscopy. This study provides an important step towards characterizing the complete photocycle dynamics of retinal proteins and demonstrates the feasibility of a sample efficient viscous medium jet for TR-SFX.


Subject(s)
Bacteriorhodopsins/chemistry , Crystallography, X-Ray/methods , Lasers , Lipids/chemistry , Crystallography, X-Ray/instrumentation , Feasibility Studies , Protein Conformation , Synchrotrons , Time Factors , Viscosity , X-Ray Absorption Spectroscopy/instrumentation , X-Ray Absorption Spectroscopy/methods
8.
J Phys Chem Lett ; 6(17): 3379-83, 2015 Sep 03.
Article in English | MEDLINE | ID: mdl-26275765

ABSTRACT

The phytochrome family of light-switchable proteins has long been studied by biochemical, spectroscopic and crystallographic means, while a direct probe for global conformational signal propagation has been lacking. Using solution X-ray scattering, we find that the photosensory cores of several bacterial phytochromes undergo similar large-scale structural changes upon red-light excitation. The data establish that phytochromes with ordinary and inverted photocycles share a structural signaling mechanism and that a particular conserved histidine, previously proposed to be involved in signal propagation, in fact tunes photoresponse.


Subject(s)
Bacteria/chemistry , Phytochrome/chemistry , Signal Transduction
9.
Clin Vaccine Immunol ; 22(1): 65-71, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25378351

ABSTRACT

Classical swine fever (CSF) is a highly contagious viral disease of pigs that has a tremendous socioeconomic impact. Vaccines are available for disease control. However, most industrialized countries are implementing stamping-out strategies to eliminate the disease and avoid trade restrictions. These restrictions can be avoided through the use of marker vaccines such as CP7_E2alf. Marker vaccines have to be accompanied by reliable and robust discriminatory assays. In this context, a multiplex microsphere immunoassay for serological differentiation of infected from vaccinated animals (DIVA) was developed to distinguish CSF virus (CSFV)-infected animals from CP7_E2alf-vaccinated animals. To this end, three viral proteins, namely, CSFV E2, CSFV E(rns), and bovine viral diarrhea virus (BVDV) E2, were produced in insect cells using a baculovirus expression system; they were used as antigens in a microsphere immunoassay, which was further evaluated by testing a large panel of pig sera and compared to a well-characterized commercial CSFV E2 antibody enzyme-linked immunosorbent assays (ELISAs) and a test version of an improved CSFV E(rns) antibody ELISA. Under a cutoff median fluorescence intensity value of 5,522, the multiplex microsphere immunoassay had a sensitivity of 98.5% and a specificity of 98.9% for the detection of antibodies against CSFV E2. The microsphere immunoassay and the CSFV E(rns) ELISA gave the same results for 155 out of 187 samples (82.8%) for the presence of CSFV E(rns) antibodies. This novel multiplex immunoassay is a valuable tool for measuring and differentiating immune responses to vaccination and/or infection in animals.


Subject(s)
Classical Swine Fever Virus/immunology , Classical Swine Fever/immunology , Immunoassay/methods , Microspheres , Viral Vaccines/immunology , Animals , Antigens, Viral , Diagnosis, Differential , Sensitivity and Specificity , Swine , Vaccines, Marker/administration & dosage , Vaccines, Marker/immunology , Viral Vaccines/administration & dosage
10.
J Virol Methods ; 185(2): 193-8, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22766180

ABSTRACT

Atypical bovine pestiviruses are related antigenically and phylogenetically to bovine viral diarrhea viruses (BVDV-1 and BVDV-2), and may cause the same clinical manifestations in animals. Glycoprotein E(rns) of an atypical bovine pestivirus Th/04_KhonKaen was produced in a baculovirus expression system and was purified by affinity chromatography. The recombinant E(rns) protein was used as an antigen in a microsphere immunoassay for the detection of antibodies against BVDV-1 and atypical bovine pestivirus. The diagnostic performance of the new method was evaluated by testing a total of 596 serum samples, and the assay was compared with enzyme-linked immunosorbent assay (ELISA). Based on the negative/positive cut-off median fluorescence intensity (MFI) value of 2800, the microsphere immunoassay had a sensitivity of 100% and specificity of 100% compared to ELISA. The immunoassay was able to detect antibodies against both BVDV-1 and the atypical pestivirus. This novel microsphere immunoassay has the potential to be multiplexed for simultaneous detection of antibodies against different bovine pathogens in a high-throughput and economical way.


Subject(s)
Antibodies, Viral/isolation & purification , Antigens, Viral/analysis , Diarrhea Virus 1, Bovine Viral/isolation & purification , Diarrhea Viruses, Bovine Viral/immunology , Immunoassay/methods , Viral Envelope Proteins/immunology , Animals , Antibodies, Viral/immunology , Antigens, Viral/immunology , Antigens, Viral/isolation & purification , Baculoviridae , Bovine Virus Diarrhea-Mucosal Disease/blood , Bovine Virus Diarrhea-Mucosal Disease/immunology , Cattle , Diarrhea Virus 1, Bovine Viral/immunology , Diarrhea Viruses, Bovine Viral/isolation & purification , Genetic Vectors , Immunoassay/veterinary , Microspheres , Phylogeny , Recombinant Proteins/immunology , Recombinant Proteins/isolation & purification , Sensitivity and Specificity , Sf9 Cells , Transfection , Viral Envelope Proteins/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL