Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 16(21): 27065-27074, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38748094

ABSTRACT

Wearable biomedical sensors have enabled noninvasive and continuous physiological monitoring for daily health management and early detection of chronic diseases. Among biomedical sensors, wearable pH sensors attracted significant interest, as pH influences most biological reactions. However, conformable pH sensors that have sweat absorption ability, are self-adhesive to the skin, and are gas permeable remain largely unexplored. In this study, we present a pioneering approach to this problem by developing a Janus membrane-based pH sensor with self-adhesiveness on the skin. The sensor is composed of a hydrophobic polyurethane-polydimethylsiloxane porous hundreds nanometer-thick substrate and a hydrophilic poly(vinyl alcohol)-poly(acrylic acid) porous nanofiber layer. This Janus membrane exhibits a thickness of around 10 µm, providing a conformable adhesion to the skin. The simultaneous realization of solution absorption, gas permeability, and self-adhesiveness makes it suitable for long-term continuous monitoring without compromising the comfort of the wearer. The pH sensor was tested successfully for continuous monitoring for 7.5 h, demonstrating its potential for stable analysis of skin health conditions. The Janus membrane-based pH sensor holds significant promise for comprehensive skin health monitoring and wearable biomedical applications.


Subject(s)
Polyurethanes , Sweat , Wearable Electronic Devices , Hydrogen-Ion Concentration , Humans , Sweat/chemistry , Polyurethanes/chemistry , Permeability , Acrylic Resins/chemistry , Membranes, Artificial , Dimethylpolysiloxanes/chemistry , Adhesiveness , Nanofibers/chemistry , Biosensing Techniques/methods , Biosensing Techniques/instrumentation , Porosity , Gases/chemistry , Gases/analysis
2.
Micromachines (Basel) ; 13(8)2022 Jul 28.
Article in English | MEDLINE | ID: mdl-36014119

ABSTRACT

We present a low-cost and simple method to fabricate a novel lock-and-key mixer microfluidics using an economic stereolithography (SLA) three-dimensional (3D) printer, which costs less than USD 400 for the investment. The proposed study is promising for a high throughput fabrication module, typically limited by conventional microfluidics fabrications, such as photolithography and polymer-casting methods. We demonstrate the novel modular lock-and-key mixer for the connector and its chamber modules with optimized parameters, such as exposure condition and printing orientation. In addition, the optimization of post-processing was performed to investigate the reliability of the fabricated hollow structures, which are fundamental to creating a fluidic channel or chamber. We found out that by using an inexpensive 3D printer, the fabricated resolution can be pushed down to 850 µm and 550 µm size for squared- and circled-shapes, respectively, by the gradual hollow structure, applying vertical printing orientation. These strategies opened up the possibility of developing straightforward microfluidics platforms that could replace conventional microfluidics mold fabrication methods, such as photolithography and milling, which are costly and time consuming. Considerably cheap commercial resin and its tiny volume employed for a single printing procedure significantly cut down the estimated fabrication cost to less than 50 cents USD/module. The simulation study unravels the prominent properties of the fabricated devices for biological fluid mixers, such as PBS, urine and plasma blood. This study is eminently prospective toward microfluidics application in clinical biosensing, where disposable, low-cost, high-throughput, and reproducible chips are highly required.

3.
J Mater Chem B ; 9(28): 5711-5721, 2021 07 21.
Article in English | MEDLINE | ID: mdl-34223862

ABSTRACT

Metal-organic framework (MOF) nanomaterials offer a wide range of promising applications due to their unique properties, including open micro- and mesopores and richness of functionalization. Herein, a facile synthesis via a solvothermal method was successfully employed to prepare amine-functionalized Cu-MOF nanospheres. Moreover, the growth and the morphology of the nanospheres were optimized by the addition of PVP and TEA. By functionalization with an amine group, the immobilization of a bioreceptor towards the detection of hepatitis B infection biomarker, i.e., hepatitis B surface antigen (HBsAg), could be realized. The immobilization of the bioreceptor/antibody to Cu-MOF nanospheres was achieved through a covalent interaction between the carboxyl group of the antibodies and the amino-functional ligand in Cu-MOF via EDC/NHS coupling. The amine-functionalized Cu-MOF nanospheres act not only as a nanocarrier for antibody immobilization, but also as an electroactive material to generate the electrochemical signal. The electrochemical sensing performance was characterized using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and differential pulse voltammetry (DPV). The results showed that the current response proportionally decreased with the increase of HBsAg concentration. More importantly, the sensing performance of the amine-functionalized Cu-MOF nanospheres towards HBsAg detection was found to be consistent in real human serum media. This strategy successfully resulted in wide linear range detection of HBsAg from 1 ng mL-1 to 500 ng mL-1 with a limit of detection (LOD) of 730 pg mL-1. Thus, our approach provides a facile and low-cost synthesis process of an electrochemical immunosensor and paves the way to potentially utilize MOF-based nanomaterials for clinical use.


Subject(s)
Biosensing Techniques , Electrochemical Techniques , Hepatitis B Surface Antigens/analysis , Immunoassay , Metal-Organic Frameworks/chemistry , Nanospheres/chemistry , Amines/chemistry , Copper/chemistry , Humans , Metal-Organic Frameworks/chemical synthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...