Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Drug Discov Today ; 27(1): 315-325, 2022 01.
Article in English | MEDLINE | ID: mdl-34537331

ABSTRACT

Pharma 4.0, a technology ecosystem in drug development analogous to Industry 4.0 in healthcare, is transforming the traditional approach to drug discovery and development, aligning product quality with less time to market, and creating intelligent stakeholder networks through effective collaborations. The wide range of potential Pharma 4.0 networks have produced several conceptualizations, which have led to a lack of clarity and definition. The main emphasis of this paper is on the clinical trial stage of drug development in the Pharma 4.0 era. It highlights the merged computerized technologies that are currently used in clinical research, and proposes a framework for integrating Pharma 4.0 technologies. The impact of and barriers to employing the proposed framework are discussed, highlighting its potential and some future research applications.


Subject(s)
Clinical Trials as Topic , Drug Development , Drug Industry , Technology, Pharmaceutical/trends , Computer-Aided Design , Drug Development/methods , Drug Development/organization & administration , Drug Industry/methods , Drug Industry/organization & administration , Humans , Intersectional Framework , Intersectoral Collaboration
2.
Aging Dis ; 4(5): 276-94, 2013 Oct 01.
Article in English | MEDLINE | ID: mdl-24124633

ABSTRACT

There is a growing scientific agreement that the cellular redox regulators such as antioxidants, particularly the natural polyphenolic forms, may help lower the incidence of some pathologies, including metabolic diseases like diabetes and diabesity, cardiovascular and neurodegenerative abnormalities, and certain cancers or even have anti-aging properties. The recent researches indicate that the degree of metabolic modulation and adaptation response of cells to reductants as well as oxidants establish their survival and homeostasis, which is linked with very critical balance in imbalances in cellular redox capacity and signaling, and that might be an answer the questions why some antioxidants or phytochemicals potentially could do more harm than good, or why some proteins lose their function by increase interactions with glyco- and lipo-oxidation mediates in the cells (carbonyl stress). Nonetheless, pursue of healthy aging has led the use of antioxidants as a means to disrupt age-associated physiological dysfunctions, dysregulated metabolic processes or prevention of many age-related diseases. Although it is still early to define their exact clinical benefits for treating age-related disease, a diet rich in polyphenolic or other forms of antioxidants does seem to offer hope in delaying the onset of age-related disorders. It is now clear that any deficiency in antioxidant vitamins, inadequate enzymatic antioxidant defenses can distinctive for many age-related disease, and protein carbonylation can used as an indicator of oxidative stress associated diseases and aging status. This review examines antioxidant compounds and plant polyphenols as redox regulators in health, disease and aging processes with hope that a better understanding of the many mechanisms involved with these distinct compounds, which may lead to better health and novel treatment approaches for age-related diseases.

3.
Horm Mol Biol Clin Investig ; 16(2): 55-64, 2013 Dec.
Article in English | MEDLINE | ID: mdl-25436747

ABSTRACT

Abstract Literature surveys show that the most of the research that have been conducted on the effect of herbal remedies on many tissue pathologies, including metabolic disturbances, cardiovascular decline, neurodegeneration, cataract, diabetic retinopathy and skin inflammation, all lead to an accelerated aging process. The increased carbonylation of proteins (carbonyl stress) disturbing their function has been indicated as an underlying mechanism of cellular senescence and age-related diseases. Because it is also linked to the carbonyl stress, aging chronic disease and inflammation plays an important role in understanding the clinical implications of cellular stress response and relevant markers. Greater knowledge of the molecular and cellular mechanisms involved in several pathologies associated with aging would provide a better understanding to help us to develop suitable strategies, use specific targets to mitigate the effect of human aging, prevent particularly chronic degenerative diseases and improve quality of life. However, research is lacking on the herbal compounds affecting cellular aging signaling as well as studies regarding the action mechanism(s) of natural products in prevention of the age-related disease. This review provides leads for identifying new medicinal agents or potential phytochemical drugs from plant sources for the prevention or delaying cellular aging processes and the treatment of some disorders related with accelerated body aging.

SELECTION OF CITATIONS
SEARCH DETAIL