Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Discov ; 11(1): 80-91, 2021 01.
Article in English | MEDLINE | ID: mdl-32988960

ABSTRACT

Targeting the ataxia telangiectasia and RAD3-related (ATR) enzyme represents a promising anticancer strategy for tumors with DNA damage response (DDR) defects and replication stress, including inactivation of ataxia telangiectasia mutated (ATM) signaling. We report the dose-escalation portion of the phase I first-in-human trial of oral ATR inhibitor BAY 1895344 intermittently dosed 5 to 80 mg twice daily in 21 patients with advanced solid tumors. The MTD was 40 mg twice daily 3 days on/4 days off. Most common adverse events were manageable and reversible hematologic toxicities. Partial responses were achieved in 4 patients and stable disease in 8 patients. Median duration of response was 315.5 days. Responders had ATM protein loss and/or deleterious ATM mutations and received doses ≥40 mg twice daily. Overall, BAY 1895344 is well tolerated, with antitumor activity against cancers with certain DDR defects, including ATM loss. An expansion phase continues in patients with DDR deficiency. SIGNIFICANCE: Oral BAY 1895344 was tolerable, with antitumor activity in heavily pretreated patients with various advanced solid tumors, particularly those with ATM deleterious mutations and/or loss of ATM protein; pharmacodynamic results supported a mechanism of action of increased DNA damage. Further study is warranted in this patient population.See related commentary by Italiano, p. 14.This article is highlighted in the In This Issue feature, p. 1.


Subject(s)
Ataxia Telangiectasia , Neoplasms , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , DNA Damage , Humans , Neoplasms/drug therapy , Neoplasms/genetics , Protein Kinase Inhibitors/adverse effects
2.
Br J Cancer ; 123(9): 1360-1369, 2020 10.
Article in English | MEDLINE | ID: mdl-32741975

ABSTRACT

BACKGROUND: BAL101553 (lisavanbulin), the lysine prodrug of BAL27862 (avanbulin), exhibits broad anti-proliferative activity in human cancer models refractory to clinically relevant microtubule-targeting agents. METHODS: This two-part, open-label, phase 1/2a study aimed to determine the maximum tolerated dose (MTD) and dose-limiting toxicities (DLTs) of 2-h infusion of BAL101553 in adults with advanced or recurrent solid tumours. The MTD was determined using a modified accelerated titration design in phase I. Patients received BAL101553 at the MTD and at lower doses in the phase 2a expansion to characterise safety and efficacy and to determine the recommended phase 2 dose (RP2D). RESULTS: Seventy-three patients received BAL101553 at doses of 15-80 mg/m2 (phase 1, n = 24; phase 2a, n = 49). The MTD was 60 mg/m2; DLTs observed at doses ≥60 mg/m2 were reversible Grade 2-3 gait disturbance with Grade 2 peripheral sensory neuropathy. In phase 2a, asymptomatic myocardial injury was observed at doses ≥45 mg/m2. The RP2D for 2-h intravenous infusion was 30 mg/m2. The overall disease control rate was 26.3% in the efficacy population. CONCLUSIONS: The RP2D for 2-h infusion of BAL101553 was well tolerated. Dose-limiting neurological and myocardial side effects were consistent with the agent's vascular-disrupting properties. CLINICAL TRIAL REGISTRATION: EudraCT: 2010-024237-23.


Subject(s)
Benzimidazoles/administration & dosage , Neoplasms/drug therapy , Oxadiazoles/administration & dosage , Adult , Aged , Aged, 80 and over , Benzimidazoles/adverse effects , Benzimidazoles/pharmacokinetics , Disease Progression , Female , Humans , Infusions, Intravenous , M Phase Cell Cycle Checkpoints/drug effects , Male , Maximum Tolerated Dose , Middle Aged , Neoplasms/pathology , Oxadiazoles/adverse effects , Oxadiazoles/pharmacokinetics , Prodrugs/administration & dosage , Prodrugs/adverse effects , Prodrugs/pharmacokinetics , Spindle Apparatus/drug effects , United Kingdom
SELECTION OF CITATIONS
SEARCH DETAIL
...