Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 66(14): 9881-9893, 2023 07 27.
Article in English | MEDLINE | ID: mdl-37433017

ABSTRACT

Angiotensin-converting enzyme 2 (ACE2) is a metalloprotease that cleaves angiotensin II, a peptide substrate involved in the regulation of hypertension. Here, we identified a series of constrained bicyclic peptides, Bicycle, inhibitors of human ACE2 by panning highly diverse bacteriophage display libraries. These were used to generate X-ray crystal structures which were used to inform the design of additional Bicycles with increased affinity and inhibition of ACE2 enzymatic activity. This novel structural class of ACE2 inhibitors is among the most potent ACE2 inhibitors yet described in vitro, representing a valuable tool to further probe ACE2 function and for potential therapeutic utility.


Subject(s)
Angiotensin-Converting Enzyme 2 , Carboxypeptidases , Humans , Carboxypeptidases/chemistry , Peptidyl-Dipeptidase A , Bicycling , Peptides/pharmacology , Angiotensin II , Peptide Fragments
2.
Nat Commun ; 14(1): 3583, 2023 06 16.
Article in English | MEDLINE | ID: mdl-37328472

ABSTRACT

COVID-19 has stimulated the rapid development of new antibody and small molecule therapeutics to inhibit SARS-CoV-2 infection. Here we describe a third antiviral modality that combines the drug-like advantages of both. Bicycles are entropically constrained peptides stabilized by a central chemical scaffold into a bi-cyclic structure. Rapid screening of diverse bacteriophage libraries against SARS-CoV-2 Spike yielded unique Bicycle binders across the entire protein. Exploiting Bicycles' inherent chemical combinability, we converted early micromolar hits into nanomolar viral inhibitors through simple multimerization. We also show how combining Bicycles against different epitopes into a single biparatopic agent allows Spike from diverse variants of concern (VoC) to be targeted (Alpha, Beta, Delta and Omicron). Finally, we demonstrate in both male hACE2-transgenic mice and Syrian golden hamsters that both multimerized and biparatopic Bicycles reduce viraemia and prevent host inflammation. These results introduce Bicycles as a potential antiviral modality to tackle new and rapidly evolving viruses.


Subject(s)
COVID-19 , SARS-CoV-2 , Male , Animals , Cricetinae , Mice , Antiviral Agents/pharmacology , Peptides/pharmacology , Antibodies , Mesocricetus , Mice, Transgenic , Spike Glycoprotein, Coronavirus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...