Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 18203, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37875533

ABSTRACT

X-ray Absorption Spectroscopy (XAS) is a widely used X-ray diagnostic method for studying electronic and structural properties of matter. At first glance, the relatively narrow bandwidth and the highly fluctuating spectral structure of X-ray Free Electron Lasers (XFEL) sources seem to require accumulation over many shots to achieve high data quality. To date the best approach to implementing XAS at XFEL facilities has been using monochromators to scan the photon energy across the desired spectral range. While this is possible for easily reproducible samples such as liquids, it is incompatible with many important systems. Here, we demonstrate collection of single-shot XAS spectra over 10s of eV using an XFEL source, with error bars of only a few percent. We additionally show how to extend this technique over wider spectral ranges towards Extended X-ray Absorption Fine Structure measurements, by concatenating a few tens of single-shot measurements. Our results pave the way for future XAS studies at XFELs, in particular those in the femtosecond regime. This advance is envisioned to be especially important for many transient processes that can only be initiated at lower repetition rates, for difficult to reproduce excitation conditions, or for rare samples, such as those encountered in high-energy density physics.

2.
J Synchrotron Radiat ; 29(Pt 1): 167-179, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34985434

ABSTRACT

Results of the 2018 commissioning and experimental campaigns of the new High Power Laser Facility on the Energy-dispersive X-ray Absorption Spectroscopy (ED-XAS) beamline ID24 at the ESRF are presented. The front-end of the future laser, delivering 15 J in 10 ns, was interfaced to the beamline. Laser-driven dynamic compression experiments were performed on iron oxides, iron alloys and bismuth probed by online time-resolved XAS.

3.
Sci Rep ; 10(1): 11663, 2020 Jul 15.
Article in English | MEDLINE | ID: mdl-32669572

ABSTRACT

X-ray absorption spectroscopy (XAS) is a widely used technique to probe the local environment around specific atomic species. Applied to samples under extreme pressure and temperature conditions, XAS is sensitive to phase transitions, including melting, and allows gathering insights on compositional variations and electronic changes occurring during such transitions. These characteristics can be exploited for studies of prime interest in geophysics and fundamental high-pressure physics. Here, we investigated the melting curve and the eutectic composition of four geophysically relevant iron binary systems: Fe-C, Fe-O, Fe-S and Fe-Si. Our results show that all these systems present the same spectroscopic signatures upon melting, common to those observed for other pure late 3d transition metals. The presented melting criterion seems to be general for late 3d metals bearing systems. Additionally, we demonstrate the suitability of XAS to extract melt compositional information in situ, such as the evolution of the concentration of light elements with increasing temperature. Diagnostics presented in this work can be applied to studies over an even larger pressure range exploiting the upgraded synchrotron machines, and directly transferred to time-resolved extreme condition studies using dynamic compression (ns) or fast laser heating (ms).

4.
Sci Rep ; 10(1): 10197, 2020 Jun 23.
Article in English | MEDLINE | ID: mdl-32576908

ABSTRACT

SiO2 is one of the most fundamental constituents in planetary bodies, being an essential building block of major mineral phases in the crust and mantle of terrestrial planets (1-10 ME). Silica at depths greater than 300 km may be present in the form of the rutile-type, high pressure polymorph stishovite (P42/mnm) and its thermodynamic stability is of great interest for understanding the seismic and dynamic structure of planetary interiors. Previous studies on stishovite via static and dynamic (shock) compression techniques are contradictory and the observed differences in the lattice-level response is still not clearly understood. Here, laser-induced shock compression experiments at the LCLS- and SACLA XFEL light-sources elucidate the high-pressure behavior of stishovite on the lattice-level under in situ conditions on the Hugoniot to pressures above 300 GPa. We find stishovite is still (meta-)stable at these conditions, and does not undergo any phase transitions. This contradicts static experiments showing structural transformations to the CaCl2, α-PbO2 and pyrite-type structures. However, rate-limited kinetic hindrance may explain our observations. These results are important to our understanding into the validity of EOS data from nanosecond experiments for geophysical applications.

5.
Struct Dyn ; 7(3): 034303, 2020 May.
Article in English | MEDLINE | ID: mdl-32596413

ABSTRACT

We have recorded the diffraction patterns from individual xenon clusters irradiated with intense extreme ultraviolet pulses to investigate the influence of light-induced electronic changes on the scattering response. The clusters were irradiated with short wavelength pulses in the wavelength regime of different 4d inner-shell resonances of neutral and ionic xenon, resulting in distinctly different optical properties from areas in the clusters with lower or higher charge states. The data show the emergence of a transient structure with a spatial extension of tens of nanometers within the otherwise homogeneous sample. Simulations indicate that ionization and nanoplasma formation result in a light-induced outer shell in the cluster with a strongly altered refractive index. The presented resonant scattering approach enables imaging of ultrafast electron dynamics on their natural timescale.

6.
Sci Adv ; 3(6): e1602705, 2017 06.
Article in English | MEDLINE | ID: mdl-28630909

ABSTRACT

The understanding of fracture phenomena of a material at extremely high strain rates is a key issue for a wide variety of scientific research ranging from applied science and technological developments to fundamental science such as laser-matter interaction and geology. Despite its interest, its study relies on a fine multiscale description, in between the atomic scale and macroscopic processes, so far only achievable by large-scale atomic simulations. Direct ultrafast real-time monitoring of dynamic fracture (spallation) at the atomic lattice scale with picosecond time resolution was beyond the reach of experimental techniques. We show that the coupling between a high-power optical laser pump pulse and a femtosecond x-ray probe pulse generated by an x-ray free electron laser allows detection of the lattice dynamics in a tantalum foil at an ultrahigh strain rate of [Formula: see text] ~2 × 108 to 3.5 × 108 s-1. A maximal density drop of 8 to 10%, associated with the onset of spallation at a spall strength of ~17 GPa, was directly measured using x-ray diffraction. The experimental results of density evolution agree well with large-scale atomistic simulations of shock wave propagation and fracture of the sample. Our experimental technique opens a new pathway to the investigation of ultrahigh strain-rate phenomena in materials at the atomic scale, including high-speed crack dynamics and stress-induced solid-solid phase transitions.

7.
Phys Rev Lett ; 117(15): 153401, 2016 Oct 07.
Article in English | MEDLINE | ID: mdl-27768378

ABSTRACT

We studied the nanoplasma formation and explosion dynamics of single large xenon clusters in ultrashort, intense x-ray free-electron laser pulses via ion spectroscopy. The simultaneous measurement of single-shot diffraction images enabled a single-cluster analysis that is free from any averaging over the cluster size and laser intensity distributions. The measured charge state-resolved ion energy spectra show narrow distributions with peak positions that scale linearly with final ion charge state. These two distinct signatures are attributed to highly efficient recombination that eventually leads to the dominant formation of neutral atoms in the cluster. The measured mean ion energies exceed the value expected without recombination by more than an order of magnitude, indicating that the energy release resulting from electron-ion recombination constitutes a previously unnoticed nanoplasma heating process. This conclusion is supported by results from semiclassical molecular dynamics simulations.

8.
Proc Natl Acad Sci U S A ; 113(28): 7745-9, 2016 07 12.
Article in English | MEDLINE | ID: mdl-27357672

ABSTRACT

Investigation of the iron phase diagram under high pressure and temperature is crucial for the determination of the composition of the cores of rocky planets and for better understanding the generation of planetary magnetic fields. Here we present X-ray diffraction results from laser-driven shock-compressed single-crystal and polycrystalline iron, indicating the presence of solid hexagonal close-packed iron up to pressure of at least 170 GPa along the principal Hugoniot, corresponding to a temperature of 4,150 K. This is confirmed by the agreement between the pressure obtained from the measurement of the iron volume in the sample and the inferred shock strength from velocimetry deductions. Results presented in this study are of the first importance regarding pure Fe phase diagram probed under dynamic compression and can be applied to study conditions that are relevant to Earth and super-Earth cores.

9.
Opt Lett ; 37(15): 3033-5, 2012 Aug 01.
Article in English | MEDLINE | ID: mdl-22859076

ABSTRACT

The interaction of free electron laser pulses with grating structure is investigated using 4.6±0.1 nm radiation at the FLASH facility in Hamburg. For fluences above 63.7±8.7 mJ/cm2, the interaction triggers a damage process starting at the edge of the grating structure as evidenced by optical and atomic force microscopy. Simulations based on solution of the Helmholtz equation demonstrate an enhancement of the electric field intensity distribution at the edge of the grating structure. A procedure is finally deduced to evaluate damage threshold.

SELECTION OF CITATIONS
SEARCH DETAIL
...