Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 4946, 2024 02 28.
Article in English | MEDLINE | ID: mdl-38418893

ABSTRACT

The so-called man-eating wolves of Turku, a pack of three wolves, reportedly killed 22 children in South-Western Finland in 1880-1881. Enormous efforts were carried out to eradicate them. In January 1882 the last remaining wolf was killed. Since then, there has been considerable debate regarding the validity and extent of the man-eating behaviour. This study aims to clarify whether man-eating behaviour can be observed from the remains of these wolves. One of the wolves was mounted in 1882 and is on display at St. Olaf's school in Turku, enabling us to collect hair keratin samples. Additionally, hair keratin was collected from two other suspected man-eaters. We analysed carbon (δ13C) and nitrogen (δ15N) stable isotope values to study the wolf's diet during the last months of its life. Samples from seven temporally concurrent wolves were used to construct reference values. Our analyses indicated that δ15N values of suspected man-eaters were relatively low compared to the reference sample. We could not detect clear trends in isotope ratios associated with potential man-eating behavior. We believe that this lack of distinctive patterns can be explained by the relatively minor role that man-eating played in their overall diet.


Subject(s)
Nitrogen , Wolves , Animals , Child , Humans , Carbon , Keratins, Hair-Specific , Nitrogen Isotopes/analysis , Carbon Isotopes/analysis , Diet
2.
Ecol Evol ; 13(1): e9720, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36699566

ABSTRACT

The Saimaa ringed seal (Pusa hispida saimensis) is endemic to Lake Saimaa in Finland. The subspecies is thought to have originated when parts of the ringed seal population of the Baltic region were trapped in lakes emerging due to postglacial bedrock rebound around 9000 years ago. During the 20th century, the population experienced a drastic human-induced bottleneck. Today encompassing a little over 400 seals with extremely low genetic diversity, it is classified as endangered. We sequenced sections of the mitochondrial control region from 60 up to 125-years-old museum specimens of the Saimaa ringed seal. The generated dataset was combined with publicly available sequences. We studied how genetic variation has changed through time in this subspecies and how it is phylogenetically related to other ringed seal populations from the Baltic Sea, Lake Ladoga, North America, Svalbard, and the White Sea. We observed temporal fluctuations in haplotype frequencies and loss of haplotypes accompanied by a recent reduction in female effective population size. In apparent contrast with the traditionally held view of the Baltic origin of the population, the Saimaa ringed seal mtDNA variation also shows affinities to North American ringed seals. Our results suggest that the Saimaa ringed seal has experienced recent genetic drift associated with small population size. The results further suggest that extant Baltic ringed seal is not representative of the ancestral population of the Saimaa ringed seal, which calls for re-evaluation of the deep history of this subspecies.

3.
BMC Genomics ; 22(1): 473, 2021 Jun 25.
Article in English | MEDLINE | ID: mdl-34171993

ABSTRACT

BACKGROUND: Understanding the processes that lead to hybridization of wolves and dogs is of scientific and management importance, particularly over large geographical scales, as wolves can disperse great distances. However, a method to efficiently detect hybrids in routine wolf monitoring is lacking. Microsatellites offer only limited resolution due to the low number of markers showing distinctive allele frequencies between wolves and dogs. Moreover, calibration across laboratories is time-consuming and costly. In this study, we selected a panel of 96 ancestry informative markers for wolves and dogs, derived from the Illumina CanineHD Whole-Genome BeadChip (174 K). We designed very short amplicons for genotyping on a microfluidic array, thus making the method suitable also for non-invasively collected samples. RESULTS: Genotypes based on 93 SNPs from wolves sampled throughout Europe, purebred and non-pedigree dogs, and suspected hybrids showed that the new panel accurately identifies parental individuals, first-generation hybrids and first-generation backcrosses to wolves, while second- and third-generation backcrosses to wolves were identified as advanced hybrids in almost all cases. Our results support the hybrid identity of suspect individuals and the non-hybrid status of individuals regarded as wolves. We also show the adequacy of these markers to assess hybridization at a European-wide scale and the importance of including samples from reference populations. CONCLUSIONS: We showed that the proposed SNP panel is an efficient tool for detecting hybrids up to the third-generation backcrosses to wolves across Europe. Notably, the proposed genotyping method is suitable for a variety of samples, including non-invasive and museum samples, making this panel useful for wolf-dog hybrid assessments and wolf monitoring at both continental and different temporal scales.


Subject(s)
Wolves , Animals , Dogs , Europe , Hybridization, Genetic , Microsatellite Repeats , Polymorphism, Single Nucleotide , Wolves/genetics
4.
BMC Ecol ; 17(1): 44, 2017 12 19.
Article in English | MEDLINE | ID: mdl-29258497

ABSTRACT

BACKGROUND: Carnivores are re-establishing in many human-populated areas, where their presence is often contentious. Reaching consensus on management decisions is often hampered by a dispute over the size of the local carnivore population. Understanding the reproductive dynamics and individual movements of the carnivores can provide support for management decisions, but individual-level information can be difficult to obtain from elusive, wide-ranging species. Non-invasive genetic sampling can yield such information, but makes subsequent reconstruction of population history challenging due to incomplete population coverage and error-prone data. Here, we combine a collaborative, volunteer-based sampling scheme with Bayesian pedigree reconstruction to describe the pack dynamics of an establishing grey wolf (Canis lupus) population in south-west Finland, where wolf breeding was recorded in 2006 for the first time in over a century. RESULTS: Using DNA extracted mainly from faeces collected since 2008, we identified 81 individual wolves and assigned credible full parentages to 70 of these and partial parentages to a further 9, revealing 7 breeding pairs. Individuals used a range of strategies to obtain breeding opportunities, including dispersal to established or new packs, long-distance migration and inheriting breeding roles. Gene flow occurred between all packs but inbreeding events were rare. CONCLUSIONS: These findings demonstrate that characterizing ongoing pack dynamics can provide detailed, locally-relevant insight into the ecology of contentious species such as the wolf. Involving various stakeholders in data collection makes these results more likely to be accepted as unbiased and hence reliable grounds for management decisions.


Subject(s)
Conservation of Natural Resources , Gene Flow , Wolves/physiology , Animals , Bayes Theorem , Data Collection , Female , Finland , Male , Pedigree , Population Dynamics , Wolves/genetics
5.
BMC Evol Biol ; 14: 64, 2014 Mar 28.
Article in English | MEDLINE | ID: mdl-24678616

ABSTRACT

BACKGROUND: Many western European carnivore populations became almost or completely eradicated during the last ~200 years, but are now recovering. Extirpation of wolves started in Finland in the 19th century, and for more than 150 years the population size of wolves has remained small. To investigate historical patterns of genetic variation, we extracted DNA from 114 wolf samples collected in zoological museums over the last ~150 years. Fifteen microsatellite loci were used to look at genotypic variation in this historical sample. Additionally, we amplified a 430 bp sequence of mtDNA control region from the same samples. Contemporary wolf samples (N = 298) obtained after the population recovery in the mid-1990s, were used as a reference. RESULTS: Our analyses of mtDNA revealed reduced variation in the mtDNA control region through the loss of historical haplotypes observed prior to wolf declines. Heterozygosity at autosomal microsatellite loci did not decrease significantly. However, almost 20% of microsatellite alleles were unique to wolves collected before the 1960s. The genetic composition of the population changed gradually with the largest changes occurring prior to 1920. Half of the oldest historical samples formed a distinguishable genetic cluster not detected in the modern-day Finnish or Russian samples, and might therefore represent northern genetic variation lost from today's gene pool. Point estimates of Ne were small (13.2 and 20.5) suggesting population fragmentation. Evidence of a genetic population bottleneck was also detected. CONCLUSIONS: Our genetic analyses confirm changes in the genetic composition of the Finnish wolf population through time, despite the geographic interconnectivity to a much larger population in Russia. Our results emphasize the need for restoration of the historical connectivity between the present wolf populations to secure long-term viability. This might be challenging, however, because the management policies between Western and Eastern Europe often differ greatly. Additionally, wolf conservation is still a rather controversial issue, and anthropogenic pressure towards wolves remains strong.


Subject(s)
Biological Evolution , Phylogeny , Wolves/classification , Wolves/genetics , Animals , DNA, Mitochondrial/genetics , Finland , Fossils , Genetic Variation , Genetics, Population , Microsatellite Repeats , Population Density
SELECTION OF CITATIONS
SEARCH DETAIL
...