Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Genet Eng Biotechnol ; 21(1): 129, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37987973

ABSTRACT

BACKGROUND: DNA polymerase is an essential component in PCR assay for DNA synthesis. Improving DNA polymerase with characteristics indispensable for a powerful assay is crucial because it can be used in wide-range applications. Derived from Pyrococcus furiosus, Pfu DNA polymerase (Pfu pol) is one of the excellent polymerases due to its high fidelity. Therefore, we aimed to develop Pfu pol from a synthetic gene with codon optimization to increase its protein yield in Escherichia coli. RESULTS: Recombinant Pfu pol was successfully expressed and purified with a two-step purification process using nickel affinity chromatography, followed by anion exchange chromatography. Subsequently, the purified Pfu pol was confirmed by Western blot analysis, resulting in a molecular weight of approximately 90 kDa. In the final purification process, we successfully obtained a large amount of purified enzyme (26.8 mg/L). Furthermore, the purified Pfu pol showed its functionality and efficiency when tested for DNA amplification using the standard PCR. CONCLUSIONS: Overall, a high-level expression of recombinant Pfu pol was achieved by employing our approach in the present study. In the future, our findings will be useful for studies on synthesizing recombinant DNA polymerase in E. coli expression system.

2.
Biochem Biophys Res Commun ; 670: 94-101, 2023 08 30.
Article in English | MEDLINE | ID: mdl-37290287

ABSTRACT

Protein phosphatase 2A (PP2A) is a key regulator of plant growth and development, but its role in the endoplasmic reticulum (ER) stress response remains elusive. In this study, we investigated the function of PP2A under ER stress using loss-of-function mutants of ROOTS CURL of NAPHTHYLPHTHALAMIC ACID1 (RCN1), a regulatory A1 subunit isoform of Arabidopsis PP2A. RCN1 mutants (rcn1-1 and rcn1-2) exhibited reduced sensitivity to tunicamycin (TM), an inhibitor of N-linked glycosylation and inducer of unfolded protein response (UPR) gene expression, resulting in less severe effects compared to wild-type plants (Ws-2 and Col-0). TM negatively impacted PP2A activity in Col-0 plants but did not significantly affect rcn1-2 plants. Additionally, TM treatment did not influence the transcription levels of the PP2AA1(RCN1), 2, and 3 genes in Col-0 plants. Cantharidin, a PP2A inhibitor, exacerbated growth defects in rcn1 plants and alleviated TM-induced growth inhibition in Ws-2 and Col-0 plants. Furthermore, cantharidin treatment mitigated TM hypersensitivity in ire1a&b and bzip28&60 mutants. These findings suggest that PP2A activity is essential for an efficient UPR in Arabidopsis.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Protein Phosphatase 2 , Unfolded Protein Response , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cantharidin/pharmacology , Endoplasmic Reticulum Stress , Gene Expression Regulation, Plant , Mutation , Protein Phosphatase 2/genetics , Protein Phosphatase 2/metabolism
3.
J Genet Eng Biotechnol ; 20(1): 19, 2022 Feb 07.
Article in English | MEDLINE | ID: mdl-35132511

ABSTRACT

BACKGROUND: A major discovery in human etiology recognized that cervical cancer is a consequence of an infection caused by some mucosatropic types of human papillomavirus (HPV). Since L1 protein of HPV is able to induce the formation of neutralizing antibodies, it becomes a protein target to develop HPV vaccines. Therefore, this study aims to obtain and analyze the expression of HPV subunit recombinant protein, namely L1 HPV 52 in E. coli BL21 DE3. The raw material used was L1 HPV 52 protein, while the synthetic gene, which is measured at 1473 bp in pD451-MR plasmid, was codon-optimized (ATUM) and successfully integrated into 5643 base pairs (bps) of pETSUMO. Bioinformatic studies were also conducted to analyze B cell epitope, T cell epitope, and immunogenicity prediction for L1HPV52 protein. RESULTS: The pETSUMO-L1HPV52 construct was successfully obtained in a correct ligation size when it was cut with EcoRI. Digestion by EcoRI revealed a size of 5953 and 1160 bps for both TA cloning petSUMO vector and gene of interest, respectively. Furthermore, the right direction of construct pETSUMO-L1HPV52 was proven by PCR techniques using specific primer pairs then followed by sequencing, which shows 147 base pairs. Characterization of L1 HPV 52 by SDS-PAGE analysis confirms the presence of a protein band at a size of ~55 kDa with 6.12 mg/L of total protein concentration. Observation under by transmission electron microscope demonstrates the formation of VLP-L1 at a size between 30 and 40 nm in assembly buffer under the condition of pH 5.4. Based on bioinformatics studies, we found that there are three B cell epitopes (GFPDTSFYNPET, DYLQMASEPY, KEKFSADLDQFP) and four T cell epitopes (YLQMASEPY, PYGDSLFFF, DSLFFFLRR, MFVRHFFNR). Moreover, an immunogenicity study shows that among all the T cell epitopes, the one that has the highest affinity value is DSLFFFLRR for Indonesian HLAs. CONCLUSION: Regarding the achievement on successful formation of L1 HPV52-VLPs, followed by some possibilities found from bioinformatics studies, this study suggests promising results for future development of L1 HPV type 52 vaccine in Indonesia.

4.
Mol Biol Rep ; 48(3): 3047-3054, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33837900

ABSTRACT

Sugarcane mosaic virus (SCMV) is a serious disease of monocotyledonous plants, including sugarcane, causing deterioration in both growth and productivity. RNA interference (RNAi) inhibits gene expression through RNA-mediated sequence-specific interactions and is considered an effective approach to control viral infection in plants. In this study, the SCMVCp gene encoding the coat protein (CP) was inserted into the pGreen-0179 plasmid in both sense and antisense orientations. Cauliflower mosaic virus (CaMV) and Zea mays ubiquitin (Ubi) promoters were selected to drive the transcription of the intron-hairpin constructs, called HpSCMVCp-CaMV and HpSCMVCp-Ubi, respectively. Transgenic sugarcane expressing these constructs was generated through Agrobacterium-mediated transformation. This transformation method produced a high percentage of transgenic plants for both HpSCMVCp-CaMV and HpSCMVCp-Ubi, as confirmed by PCR analysis. Southern blotting revealed a single stable insertion of the DNA target in the genome of transgenic sugarcane lines. After artificial virus infection, lines that developed mosaic symptoms were classified as susceptible, whereas those that remained green without symptoms were classified as resistant at 42 days post-inoculation. Immunoblotting revealed CP expression at 37 kDa in susceptible and non-transgenic sugarcane, but not in resistant lines. RT-PCR analysis confirmed viral Cp and Nib gene expression in susceptible lines and their absence in resistant lines. Interestingly, upon comparison of effectivity, CaMV and Ubi promoter-driven gene expression resulted in 57.69% and 82.35% resistant sugarcane lines, respectively. Thus, we concluded that RNAi is effective for inducing resistance against SCMV and that the Ubi promoter is an effective promoter for producing transgenic sugarcane.


Subject(s)
Capsid Proteins/genetics , Disease Resistance/genetics , Potyvirus/genetics , RNA Interference , Saccharum/genetics , Saccharum/virology , DNA, Plant/genetics , Genome, Plant , Plant Leaves/genetics , Plant Leaves/virology
5.
New Phytol ; 212(1): 108-22, 2016 10.
Article in English | MEDLINE | ID: mdl-27241276

ABSTRACT

In plants, α1,3-fucosyltransferase (FucT) catalyzes the transfer of fucose from GDP-fucose to asparagine-linked GlcNAc of the N-glycan core in the medial Golgi. To explore the physiological significance of this processing, we isolated two Oryza sativa (rice) mutants (fuct-1 and fuct-2) with loss of FucT function. Biochemical analyses of the N-glycan structure confirmed that α1,3-fucose is missing from the N-glycans of allelic fuct-1 and fuct-2. Compared with the wild-type cv Kitaake, fuct-1 displayed a larger tiller angle, shorter internode and panicle lengths, and decreased grain filling as well as an increase in chalky grains with abnormal shape. The mutant allele fuct-2 gave rise to similar developmental abnormalities, although they were milder than those of fuct-1. Restoration of a normal tiller angle in fuct-1 by complementation demonstrated that the phenotype is caused by the loss of FucT function. Both fuct-1 and fuct-2 plants exhibited reduced gravitropic responses. Expression of the genes involved in tiller and leaf angle control was also affected in the mutants. We demonstrate that reduced basipetal auxin transport and low auxin accumulation at the base of the shoot in fuct-1 account for both the reduced gravitropic response and the increased tiller angle.


Subject(s)
Fucose/metabolism , Gravitropism/physiology , Indoleacetic Acids/metabolism , Oryza/metabolism , Oryza/physiology , Polysaccharides/metabolism , Alleles , Biological Transport , DNA, Bacterial/genetics , Fucose/chemistry , Genes, Plant , Genetic Complementation Test , Loss of Function Mutation/genetics , Magnaporthe/physiology , Mutagenesis, Insertional/genetics , Mutation/genetics , Oryza/genetics , Oryza/microbiology , Phenotype , Plant Diseases/microbiology , Plant Immunity/genetics , Plant Proteins/metabolism , Plant Shoots/physiology , Polysaccharides/chemistry , Reproduction , Seeds/metabolism
6.
J Biol Chem ; 290(27): 16560-72, 2015 Jul 03.
Article in English | MEDLINE | ID: mdl-26001781

ABSTRACT

The most abundant N-glycan in plants is the paucimannosidic N-glycan with core ß1,2-xylose and α1,3-fucose residues (Man3XylFuc(GlcNAc)2). Here, we report a mechanism in Arabidopsis thaliana that efficiently produces the largest N-glycan in plants. Genetic and biochemical evidence indicates that the addition of the 6-arm ß1,2-GlcNAc residue by N-acetylglucosaminyltransferase II (GnTII) is less effective than additions of the core ß1,2-xylose and α1,3-fucose residues by XylT, FucTA, and FucTB in Arabidopsis. Furthermore, analysis of gnt2 mutant and 35S:GnTII transgenic plants shows that the addition of the 6-arm non-reducing GlcNAc residue to the common N-glycan acceptor GlcNAcMan3(GlcNAc)2 inhibits additions of the core ß1,2-xylose and α1,3-fucose residues. Our findings indicate that plants limit the rate of the addition of the 6-arm GlcNAc residue to the common N-glycan acceptor as a mechanism to facilitate formation of the prevalent N-glycans with Man3XylFuc(GlcNAc)2 and (GlcNAc)2Man3XylFuc(GlcNAc)2 structures.


Subject(s)
Acetylglucosamine/metabolism , Arabidopsis/metabolism , Polysaccharides/biosynthesis , Arabidopsis/chemistry , Arabidopsis/genetics , Carbohydrate Sequence , Molecular Sequence Data , Polysaccharides/chemistry
7.
Mol Cells ; 35(3): 202-9, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23456296

ABSTRACT

In plants, transgenes with inverted repeats are used to induce efficient RNA silencing, which is also frequently induced by highly transcribed sense transgenes. RNA silencing induced by sense transgenes is dependent on RNA-dependent RNA polymerase 6 (RDR6), which converts single-stranded (ss) RNA into double-stranded (ds) RNA. By contrast, it has been proposed that RNA silencing induced by self-complementary hairpin RNA (hpRNA) does not require RDR6, because the hpRNA can directly fold back on itself to form dsRNA. However, it is unclear whether RDR6 plays a role in hpRNA-induced RNA silencing by amplifying dsRNA to spread RNA silencing within the plant. To address the efficiency of hpRNA-induced RNA silencing in the presence or absence of RDR6, Wild type (WT, Col-0) and rdr6-11 Arabidopsis thaliana lines expressing green fluorescent protein (GFP) were generated and transformed with a GFP-RNA interference (RNAi) construct. Whereas most GFP-RNAi-transformed WT lines exhibited almost complete silencing of GFP expression in the T1 generation, various levels of GFP expression remained among the GFP-RNAi-transformed rdr6-11 lines. Homozygous expression of GFP-RNAi in the T3 generation was not sufficient to induce complete GFP silencing in several rdr6-11 lines. Our results indicate that RDR6 is required for efficient hpRNA-induced RNA silencing in plants.


Subject(s)
Arabidopsis Proteins/physiology , Arabidopsis/enzymology , Gene Expression Regulation, Plant , RNA Interference , RNA, Small Interfering/genetics , RNA-Dependent RNA Polymerase/physiology , Seedlings/enzymology , Arabidopsis/genetics , Genes, Plant , Green Fluorescent Proteins/biosynthesis , Green Fluorescent Proteins/genetics , Inverted Repeat Sequences , Mutation , Phenotype , Seedlings/genetics
8.
Plant J ; 73(6): 966-79, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23199012

ABSTRACT

To explore the physiological significance of N-glycan maturation in the plant Golgi apparatus, gnt1, a mutant with loss of N-acetylglucosaminyltransferase I (GnTI) function, was isolated in Oryza sativa. gnt1 exhibited complete inhibition of N-glycan maturation and accumulated high-mannose N-glycans. Phenotypic analyses revealed that gnt1 shows defective post-seedling development and incomplete cell wall biosynthesis, leading to symptoms such as failure in tiller formation, brittle leaves, reduced cell wall thickness, and decreased cellulose content. The developmental defects of gnt1 ultimately resulted in early lethality without transition to the reproductive stage. However, callus induced from gnt1 seeds could be maintained for periods, although it exhibited a low proliferation rate, small size, and hypersensitivity to salt stress. Shoot regeneration and dark-induced leaf senescence assays indicated that the loss of GnTI function results in reduced sensitivity to cytokinin in rice. Reduced expression of A-type O. sativa response regulators that are rapidly induced by cytokinins in gnt1 confirmed that cytokinin signaling is impaired in the mutant. These results strongly support the proposed involvement of N-glycan maturation in transport as well as in the function of membrane proteins that are synthesized via the endomembrane system.


Subject(s)
Cellulose/biosynthesis , Cytokinins/metabolism , N-Acetylglucosaminyltransferases/genetics , Oryza/growth & development , Oryza/metabolism , Plant Proteins/genetics , Polysaccharides/metabolism , Carbohydrate Sequence , Cell Wall/chemistry , Cell Wall/genetics , Darkness , Molecular Sequence Data , Mutation , N-Acetylglucosaminyltransferases/metabolism , Oryza/genetics , Plant Leaves/physiology , Plant Proteins/metabolism , Plant Shoots/genetics , Plant Shoots/growth & development , Polysaccharides/chemistry , Seeds/genetics
9.
Biochem Biophys Res Commun ; 408(1): 78-83, 2011 Apr 29.
Article in English | MEDLINE | ID: mdl-21458419

ABSTRACT

Proteomic analysis of a rice callus led to the identification of 10 abscisic acid (ABA)-induced proteins as putative products of the embryo-specific promoter candidates. 5'-flanking sequence of 1 Cys-Prx, a highly-induced protein gene, was cloned and analyzed. The transcription initiation site of 1 Cys-Prx maps 96 nucleotides upstream of the translation initiation codon and a TATA-box and putative seed-specific cis-acting elements, RYE and ABRE, are located 26, 115 and 124 bp upstream of the transcription site, respectively. ß-glucuronidase (GUS) expression driven by the 1 Cys-Prx promoters was strong in the embryo and aleurone layer and the activity reached up to 24.9 ± 3.3 and 40.5 ± 2.1 pmol (4 MU/min/µg protein) in transgenic rice seeds and calluses, respectively. The activity of the 1 Cys-Prx promoters is much higher than that of the previously-identified embryo-specific promoters, and comparable to that of strong endosperm-specific promoters in rice. GUS expression driven by the 1 Cys-Prx promoters has been increased by ABA treatment and rapidly induced by wounding in callus and at the leaf of the transgenic plants, respectively. Furthermore, ectopic expression of the GUS construct in Arabidopsis suggested that the 1 Cys-Prx promoter also has strong activity in seeds of dicot plants.


Subject(s)
Oryza/genetics , Plant Proteins/genetics , Plants, Genetically Modified/genetics , Promoter Regions, Genetic , Seeds/genetics , Abscisic Acid/metabolism , Abscisic Acid/pharmacology , Amino Acid Sequence , Base Sequence , Gene Expression Regulation, Plant , Genes, Reporter , Glucuronidase/genetics , Molecular Sequence Data , Oryza/drug effects , Peptide Chain Initiation, Translational , Plants, Genetically Modified/drug effects , Proteomics
SELECTION OF CITATIONS
SEARCH DETAIL
...