Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Fungal Biol ; 128(3): 1758-1770, 2024 May.
Article in English | MEDLINE | ID: mdl-38796260

ABSTRACT

Starting in the fall of 2019, mortality, blight symptoms, and signs of white fungal mycelia were observed on external host tissues of non-native landscape trees as well as numerous native trees, understory shrubs, and vines throughout northern and central Florida, USA. We determined that the fungus is an undescribed species of Basidiomycota based on morphological characteristics and DNA sequence analysis. Phylogenetic analyses of the internal transcribed spacer (ITS), large subunit (LSU), and translation elongation factor 1-alpha (tef1) regions revealed that this novel plant pathogen is an undescribed taxon of the genus Parvodontia (Cystostereaceae, Agaricales). We propose the name Parvodontia relampaga sp. nov. which describes its unique morphological features and phylogenetic placement. We confirmed the pathogenicity of P. relampaga in greenhouse inoculations on host plants from which strains of this novel pathogen were isolated, including the non-native gymnosperm Afrocarpus falcatus, the non-native and commercially important Ligustrum japonicum, and the native tree Quercus hemisphaerica. P. relampaga was also detected on a total of 27 different species of woody host plants, including such economically and ecologically important hosts as Fraxinus, Ilex, Magnolia, Persea, Prunus, Salix, Vitis, and Vaccinium. For this new plant disease, we propose the name "relampago blight," which refers to the lightning-like rhizomorph growth (relámpago means 'lightning' in Spanish). This study presents a newly discovered fungal taxon with a wide host range on both angiosperms and gymnosperms that may be an emerging pathogen of concern in Florida and the Gulf Coast region.


Subject(s)
DNA, Fungal , Phylogeny , Plant Diseases , Plant Diseases/microbiology , Florida , DNA, Fungal/genetics , Agaricales/genetics , Agaricales/classification , Agaricales/isolation & purification , Agaricales/physiology , Agaricales/pathogenicity , Sequence Analysis, DNA , DNA, Ribosomal Spacer/genetics , DNA, Ribosomal Spacer/chemistry
2.
Access Microbiol ; 4(9): acmi000423, 2022.
Article in English | MEDLINE | ID: mdl-36415546

ABSTRACT

The pathogen that causes stem gall in Loropetalum chinense was first identified in Florida and Alabama in 2018 and named Pseudomonas amygdali pv. loropetali. We report the genome sequence of the pathotype strain of this pathogen, Pseudomonas amygdali pv. loropetali DSM105780 PT.

3.
Annu Rev Phytopathol ; 59: 333-349, 2021 08 25.
Article in English | MEDLINE | ID: mdl-34432509

ABSTRACT

Plant diagnostic laboratories (PDLs) are at the heart of land-grant universities (LGUs) and their extension mission to connect citizens with research-based information. Although research and technological advances have led to many modern methods and technologies in plant pathology diagnostics, the pace of adopting those methods into services at PDLs has many complexities we aim to explore in this review. We seek to identify current challenges in plant disease diagnostics, as well as diagnosticians' and administrators'perceptions of PDLs' many roles. Surveys of diagnosticians and administrators were conducted to understand the current climate on these topics. We hope this article reaches researchers developing diagnostic methods with modern and new technologies to foster a better understanding of PDL diagnosticians' perspective on method implementation. Ultimately, increasing researchers' awareness of the factors influencing method adoption by PDLs encourages support, collaboration, and partnerships to advance plant diagnostics.


Subject(s)
Laboratories , Universities , Plant Diseases , Plants
4.
Microbiol Resour Announc ; 9(29)2020 Jul 16.
Article in English | MEDLINE | ID: mdl-32675179

ABSTRACT

The genus Klebsiella includes pathogenic and nonpathogenic species. We report the 5.57-Mb genome sequences of two Klebsiella variicola strains, G18-1365 and G18-1376, isolated from symptomatic plantain plants in Haiti. These strains are genetically closely related (average nucleotide identity [ANI] > 99%) to the previously described type strain of K. variicola, DSM 15968.

5.
Virol J ; 13: 48, 2016 Mar 22.
Article in English | MEDLINE | ID: mdl-27000806

ABSTRACT

BACKGROUND: Plant viruses in the genus Begomovirus, family Geminiviridae often cause substantial crop losses. These viruses have been emerging in many locations throughout the tropics and subtropics. Like many plant viruses, they are often not recognized by plant diagnostic clinics due in large part to the lack of rapid and cost effective assays. An isothermal amplification assay, Recombinase polymerase amplification (RPA), was evaluated for its ability to detect three begomoviruses and for its suitability for use in plant diagnostic clinics. Methods for DNA extraction and separation of amplicons from proteins used in the assay were modified and compared to RPA manufacturer's protocols. The modified RPA assays were compared to PCR assays for sensitivity, use in downstream applications, cost, and speed. RESULTS: Recombinase polymerase amplification (RPA) assays for the detection of Bean golden yellow mosaic virus, Tomato mottle virus and Tomato yellow leaf curl virus (TYLCV) were specific, only amplifying the target viruses in three different host species. RPA was able to detect the target virus when the template was in a crude extract generated using a simple inexpensive extraction method, while PCR was not. Separation of RPA-generated amplicons from DNA-binding proteins could be accomplished by several methods, all of which were faster and less expensive than that recommended by the manufacturer. Use of these modifications resulted in an RPA assay that was faster than PCR but with a similar reagent cost. This modified RPA was the more cost effective assay when labor is added to the cost since RPA can be performed much faster than PCR. RPA had a sensitivity approximate to that of ELISA when crude extract was used as template. RPA-generated amplicons could be used in downstream applications (TA cloning, digestion with a restriction endonuclease, direct sequencing) similar to PCR but unlike some other isothermal reactions. CONCLUSIONS: RPA could prove useful for the cost effective detection of plant viruses by plant diagnostic clinics. It can be performed in one hour or less with a reagent cost similar to that of PCR but with a lower labor cost, and with an acceptable level of sensitivity and specificity.


Subject(s)
Begomovirus/genetics , Plant Diseases/virology , Polymerase Chain Reaction , Viral Proteins/genetics , Begomovirus/enzymology , Polymerase Chain Reaction/economics , Polymerase Chain Reaction/methods , Sensitivity and Specificity , Viral Proteins/metabolism
6.
Plant Dis ; 98(3): 379-383, 2014 Mar.
Article in English | MEDLINE | ID: mdl-30708438

ABSTRACT

Laurel wilt, caused by the fungus Raffaelea lauricola, is an exotic disease that affects members of the Lauraceae plant family in the southeastern United States. The disease is spreading rapidly in native forests and is now found in commercial avocado groves in south Florida, where an accurate diagnostic method would improve disease management. A polymerase chain reaction (PCR) method based on amplifying the ribosomal small-subunit DNA, with a detection limit of 0.0001 ng, was found to be suitable for some quantitative PCR applications; however, it was not taxon specific. Genomic sequencing of R. lauricola was used to identify and develop primers to amplify two taxon-specific simple-sequence repeat (SSR) loci, which did not amplify from related taxa or host DNA. The new SSR loci PCR assay has a detection limit of 0.1 ng of R. lauricola DNA, is compatible with traditional and real-time PCR, was tested in four labs to confirm consistency, and reduces diagnostic time from 1 week to 1 day. Our work illustrates pitfalls to designing taxon-specific assays for new pathogens and that undescribed fungi can limit specificity.

7.
Phytopathology ; 100(9): 941-8, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20701492

ABSTRACT

Kudzu (Pueraria spp.) is an accessory host for soybean rust (SBR) (caused by Phakopsora pachyrhizi) that is widespread throughout the southeastern United States. An expanded survey of kudzu sites was conducted in 2008 to determine the proportion of natural resistance in the north-Florida kudzu population. Of the 139 sites evaluated, approximately 18% were found to be free of SBR infection, while 23% had reduced sporulation. Ten accessions of kudzu from north-central Florida were characterized for their response to challenge by a single isolate of P. pachyrhizi under laboratory conditions. Three outcomes were observed: tan lesions with profuse sporulation (susceptible); reddish-brown lesions with delayed, reduced sporulation (resistant); and an immune response in which no lesions developed (immune). Of the 10 accessions, 6 were susceptible, 3 were immune, and 1 was resistant. Cytological examination revealed that resistant interactions were typified by early onset of a multicell hypersensitive response (HR) while typical immune interactions were the result of cell wall depositions that blocked penetration in combination with early onset of the HR. Quantitative real-time polymerase chain reaction was performed to determine the extent of colonization. After 15 days, there was 10-fold less P. pachyrhizi DNA present in resistant compared with susceptible kudzu, while the amount of P. pachyrhizi DNA present in the immune kudzu was below the detection level. Susceptible kudzu had approximately half the amount of P. pachyrhizi DNA present when compared with a susceptible soybean cultivar.


Subject(s)
Basidiomycota/physiology , Glycine max/microbiology , Plant Diseases/microbiology , Pueraria/microbiology , Host-Pathogen Interactions , Plant Leaves/cytology , Plant Leaves/microbiology
8.
Plant Dis ; 92(11): 1551-1558, 2008 Nov.
Article in English | MEDLINE | ID: mdl-30764437

ABSTRACT

Soybean rust (SBR) survival and host availability (kudzu, Pueraria spp.) were assessed from November 2006 through April 2007 at six sites from the panhandle to southwest Florida. Micro loggers recorded both temperature and relative humidity hourly at each location. Periods of drought and cumulative hours below 0°C correlated with kudzu defoliation. Inoculum potential from detached kudzu leaves was evaluated in vitro under various temperature and relative humidity levels. Kudzu leaves with SBR kept at 4°C produced viable urediniospores with the highest germination at all moisture levels over time. Freezing temperatures (-4 and -20°C) drastically reduced spore germination. However, when leaves were incubated at low (<35%) relative humidity, inoculum potential was prolonged. Results from this study demonstrate that both temperature and relative humidity impact P. pachyrhizi in the field and in vitro, and that detached kudzu leaves have the potential to serve as an inoculum source in kudzu stands.

SELECTION OF CITATIONS
SEARCH DETAIL
...